期刊文献+
共找到8,843篇文章
< 1 2 250 >
每页显示 20 50 100
A satellite observation data considered train positioning optimization method with RTK
1
作者 YUCHI Zhen-xin LI Wei +3 位作者 GAO Shi-juan CHEN Chun-yang HUANG Su-su JIANG Ji-xiong 《Journal of Central South University》 2025年第4期1548-1568,共21页
In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based po... In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources. 展开更多
关键词 train operation control system train positioning satellite positioning abnormal-data detection real-time kinematic positioning
在线阅读 下载PDF
Anti-spoofing performance analysis of typical GNSS-based railway train positioning schemes
2
作者 Siqi Wang Jiang Liu +3 位作者 Baigen Cai Jian Wang Debiao Lu Wei Jiang 《High-Speed Railway》 2025年第1期37-43,共7页
Global Navigation Satellite Systems(GNSSs)are vulnerable to both unintentional interference and intentional attacks,making it difficult to meet the stringent safety requirements of railway train control systems.The gr... Global Navigation Satellite Systems(GNSSs)are vulnerable to both unintentional interference and intentional attacks,making it difficult to meet the stringent safety requirements of railway train control systems.The growing threat to information security posed by spoofing attacks has received limited attention.This study investigates the impact of GNSS spoofing attacks on train positioning,emphasizing their detrimental effects on the accuracy and availability of train location report functions for train operation control.To explore the antispoofing performance of typical GNSS-based train positioning schemes,specific approaches,and system architectures are designed under two GNSS-alone and two GNSS-integrated train positioning schemes.Field data are utilized to establish spoofing attack scenarios for GNSS-based train positioning,with which the anti-spoofing capabilities of different train positioning schemes are evaluated.Experimental results indicate that under specific conditions,the GNSS-integrated positioning schemes demonstrate superior GNSS spoofing suppression capabilities.Results of the tests present valuable guidance for designers and manufacturers in developing more advanced and resilient train positioning solutions and equipment for the next generation of train control systems,thereby promoting the applications of GNSS technology in railway systems. 展开更多
关键词 Railway train control Global navigation satellite system Train positioning Interference attack Anti-spoofing
在线阅读 下载PDF
Design,Modeling,and Validation of a Tendon-driven Series Elastic Actuator Based on Magnetic Position Sensing
3
作者 Di Zhao Xinbo Wang +3 位作者 Fanbo Wei Lei Ren Kunyang Wang Luquan Ren 《Journal of Bionic Engineering》 2025年第1期195-213,共19页
Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,... Tendon-driven robots have distinct advantages in high-dynamic performance motion and high-degree-of-freedom manipulation.However,these robots face challenges related to control complexity,intricate tendon drive paths,and tendon slackness.In this study,the authors present a novel modular tendon-driven actuator design that integrates a series elastic element.The actuator incorporates a unique magnetic position sensing technology that enables observation of the length and tension of the tendon and features an exceptionally compact design.The modular architecture of the tendon-driven actuator addresses the complexity of tendon drive paths,while the tension observation functionality mitigates slackness issues.The design and modeling of the actuator are described in this paper,and a series of tests are conducted to validate the simulation model and to test the performance of the proposed actuator.The model can be used for training robot control neural networks based on simulation,thereby overcoming the challenges associated with controlling tendon-driven robots. 展开更多
关键词 Tendon-driven robots Tendon-driven actuator Magnetic position sensing Tension control Series elastic actuator
在线阅读 下载PDF
FUZZY COORDINATION AND FORCE/POSITION CONTROL OF ROBOTIC MANIPULATOR
4
作者 乔兵 尉忠信 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期55-60,共6页
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l... It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective. 展开更多
关键词 robotic manipulator force/position control CONSTRAINTS COORDINATION fuzzy synthesis
在线阅读 下载PDF
Criteria Selecting Knowledge Base in the FuzzyController of the Electrohydraulic Position Control System
5
作者 高建臣 吴平东 《Journal of Beijing Institute of Technology》 EI CAS 1998年第1期84-91,共8页
Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on diffe... Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules. 展开更多
关键词 fuzzy control knowledge base position control systems fuzzy sets
在线阅读 下载PDF
Impedance force control for position controlled robotic manipulators under the constraint of unknown environments
6
作者 乔兵 陆荣鑑 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期359-363,共5页
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge... A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy. 展开更多
关键词 robotic manipulators force/position control unknown constraint
在线阅读 下载PDF
Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system 被引量:17
7
作者 Yongling FU Xu HAN +4 位作者 Nariman SEPEHRI Guozhe ZHOU Jian FU Liming YU Rongrong YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期584-596,共13页
Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots.... Electrohydrostatic actuator(EHA) is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of positionbased impedance control(PBIC) for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained.Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test. 展开更多
关键词 Actuation system AEROSPACE Electrohydrostatic actuator Force control Nonlinear dynamics Particle swarm optimization position control
原文传递
Position Control of Electro-hydraulic Actuator System Using Fuzzy Logic Controller Optimized by Particle Swarm Optimization 被引量:17
8
作者 Daniel M. Wonohadidjojo Ganesh Kothapalli Mohammed Y. Hassan 《International Journal of Automation and computing》 EI CSCD 2013年第3期181-193,共13页
The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the in... The position control system of an electro-hydraulic actuator system (EHAS) is investigated in this paper. The EHAS is developed by taking into consideration the nonlinearities of the system: the friction and the internal leakage. A variable load that simulates a realistic load in robotic excavator is taken as the trajectory reference. A method of control strategy that is implemented by employing a fuzzy logic controller (FLC) whose parameters are optimized using particle swarm optimization (PSO) is proposed. The scaling factors of the fuzzy inference system are tuned to obtain the optimal values which yield the best system performance. The simulation results show that the FLC is able to track the trajectory reference accurately for a range of values of orifice opening. Beyond that range, the orifice opening may introduce chattering, which the FLC alone is not sufficient to overcome. The PSO optimized FLC can reduce the chattering significantly. This result justifies the implementation of the proposed method in position control of EHAS. 展开更多
关键词 position control electro-hydraulic actuator fuzzy logic controller particle swarm optimization (PSO) nonlinear.
原文传递
Adaptive Backstepping Slide Mode Control of Pneumatic Position Servo System 被引量:13
9
作者 REN Haipeng FAN Juntao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1003-1009,共7页
With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia... With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking 展开更多
关键词 pneumatic position servo system adaptive backstepping design slide mode control uncertain parameter tracking accuracy
在线阅读 下载PDF
A Position and Torque Switching Control Method for Robot Collision Safety 被引量:6
10
作者 Zhi-Jing Li Hai-Bin Wu +2 位作者 Jian-Ming Yang Ming-Hao Wang Jin-Hua Ye 《International Journal of Automation and computing》 EI CSCD 2018年第2期156-168,共13页
With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper... With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper, a position and torque switching con- trol method was proposed to improve the robot safety and performance, when robots and humans work in the same space. The switch- ing control method includes two modes, the position control mode using a proportion-integral (PI) algorithm, and the torque control mode using sliding mode control (SMC) algorithm for eliminating swing. Under the normal condition, the robot works in position con- trol mode for trajectory tracking with quick response. Once the robot and human collide, the robot will switch to torque control mode immediately, and the impact force will be restricted within a safe range. When the robot and human detach, the robot will resume to po- sition control mode automatically. Moreover, for a better performance, the joint torque is detected fl'om direct-current (DC) motor's cur- rent rather than the torque sensor. The experiment results show that the proposed approach is effective and feasible. 展开更多
关键词 Human-robot interaction position control torque control switching control robot collision safety.
原文传递
Position Control of a Flexible Manipulator Using a New Nonlinear Self-Tuning PID Controller 被引量:10
11
作者 Santanu Kumar Pradhan Bidyadhar Subudhi 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期136-149,共14页
In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Si... In this paper, a new nonlinear self-tuning PID controller(NSPIDC) is proposed to control the joint position and link deflection of a flexible-link manipulator(FLM) while it is subjected to carry different payloads. Since, payload is a critical parameter of the FLM whose variation greatly influences the controller performance. The proposed controller guarantees stability under change in payload by attenuating the non-modeled higher order dynamics using a new nonlinear autoregressive moving average with exogenous-input(NARMAX) model of the FLM. The parameters of the FLM are identified on-line using recursive least square(RLS) algorithm and using minimum variance control(MVC) laws the control parameters are updated in real-time. This proposed NSPID controller has been implemented in real-time on an experimental set-up. The joint tracking and link deflection performances of the proposed adaptive controller are compared with that of a popular direct adaptive controller(DAC). From the obtained results, it is confirmed that the proposed controller exhibits improved performance over the DAC both in terms of accurate position tracking and quick damping of link deflections when subjected to variable payloads. 展开更多
关键词 Flexible-link manipulator position control self-tuning control NARMAX trajectory tracking
在线阅读 下载PDF
Design and Reliability Analysis of DP-3 Dynamic Positioning Control Architecture 被引量:4
12
作者 王芳 万磊 +1 位作者 姜大鹏 徐玉如 《China Ocean Engineering》 SCIE EI 2011年第4期709-720,共12页
As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring... As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture 展开更多
关键词 DP-3 dynamic positioning system reliability triple redundancy motion control redundancy management
在线阅读 下载PDF
Portable Dynamic Positioning Control System on A Barge in Short-Crested Waves Using the Neural Network Algorithm 被引量:3
13
作者 FANG Ming-chung LEE Zi-yi 《China Ocean Engineering》 SCIE EI CSCD 2013年第4期469-480,共12页
This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Pro... This paper develops a nonlinear mathematical model to simulate the dynamic motion behavior of the barge equipped with the portable outboard Dynamic Positioning (DP) system in short-crested waves. The self-tuning Proportional- Derivative (PD) controller based on the neural network algorithm is applied to control the thrusters for optimal adjustment of the barge position in waves. In addition to the wave, the current, the wind and the nonlinear drift force are also considered in the calculations. The time domain simulations for the six-degree-of-freedom motions of the barge with the DP system are solved by the 4th order Runge-Kutta method which can compromise the efficiency and the accuracy of the simulations. The technique of the portable alternative DP system developed here can serve as a practical tool to assist those ships without being equipped with the DP facility while the dynamic positioning missions are needed. 展开更多
关键词 neural network PD controller dynamic positioning short-crested wave
在线阅读 下载PDF
Adaptive Observer Based Backstepping Controller Design for Dynamic Ship Positioning 被引量:3
14
作者 DENG Fang WANG Long-jin JIAO Dong-mei 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期639-645,共7页
Modified adaptive observer based backstepping control system for dynamic positioning of ship is proposed. As an improvement, the adaptive observer takes the first-order wave frequency model and the bias term which rep... Modified adaptive observer based backstepping control system for dynamic positioning of ship is proposed. As an improvement, the adaptive observer takes the first-order wave frequency model and the bias term which represent the slowly varying environmental disturbances and the unmodeled dynamics. Thus, the wave-frequency motions are filtered out, and only the reconstructed low-frequency motions are sent as inputs of the controller. Furthermore, as the ship dynamics parameters are unknown, the adaptive estimation law is designed for both the unknown ship dynamics and the unmeasured state variables. Based on the estimated states and parameters, backstepping controller considering the integral action is designed. Global exponential stability (GES) for the total system is proved using Lyapunov direct method. Simulation results show a good performance of the observer and control system. 展开更多
关键词 Dynamic positioning backstepping control adaptive observer parameter estimation
在线阅读 下载PDF
Flow Control for a Two-Stage Proportional Valve with Hydraulic Position Feedback 被引量:7
15
作者 He Wang Xiaohu Wang +1 位作者 Jiahai Huang Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期64-76,共13页
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl... The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable. 展开更多
关键词 Flow control Proportional valve Hydraulic position feedback Back-propagation neural network
在线阅读 下载PDF
Position Control Optimization of Aerodynamic Brake Device for High-speed Trains 被引量:2
16
作者 ZUO Jianyong LUO Zhuojun CHEN Zhongkai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期287-295,共9页
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentio... The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control. 展开更多
关键词 high-speed train aerodynamic brake HYDRAULIC position control optimization.
在线阅读 下载PDF
Sliding Mode Control in Position Control for Asymmetrical Hydraulic Cylinder with Chambers Connected 被引量:5
17
作者 雷军波 王宣银 皮阳军 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期454-459,共6页
In this paper, single, two-position, two-way proportional valve is used to carry out the positon control of asymmetrical hydraulic cylinder with two chambers connected. The system structure and the working princle are... In this paper, single, two-position, two-way proportional valve is used to carry out the positon control of asymmetrical hydraulic cylinder with two chambers connected. The system structure and the working princle are introduced. The dynamic model of the asymmetrical hydraulic cylinder system is established with power bond graphs method, and becomes a fundament for analyzing the system. Sliding mode controller is designed, and the stability of the control system is analyzed. The simulation results indicate that the sliding mode controller designed can actualize the position control of asymmetrical hydraulic cylinder system, and controller is superior to traditional PID controller when the load changes in some range. 展开更多
关键词 sliding mode control asymmetrical hydraulic cylinder position control bond graph
原文传递
Motor Imagery and Error Related Potential Induced Position Control of a Robotic Arm 被引量:5
18
作者 Saugat Bhattacharyya Amit Konar D.N.Tibarewala 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期639-650,共12页
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual... The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively. 展开更多
关键词 Brain-computer interfacing(BCI) error related potential(Errp) motor imagery decoding position control of a robot arm
在线阅读 下载PDF
Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators 被引量:2
19
作者 李元春 丁贵彬 赵博 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2917-2925,共9页
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper... A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme. 展开更多
关键词 constrained reconfigurable manipulators position/force control model decomposition decentralized control neural network
在线阅读 下载PDF
Position/Force Hybrid Control System for High Precision Aligning of Small Gripper to Ring Object 被引量:2
20
作者 Juan Zhang De Xu +1 位作者 Zheng-Tao Zhang Wen-Sheng Zhang 《International Journal of Automation and computing》 EI CSCD 2013年第4期360-367,共8页
A position/force hybrid control system based on impedance control scheme is designed to align a small gripper to a special ring object. The vision information provided by microscope vision system is used as the feedba... A position/force hybrid control system based on impedance control scheme is designed to align a small gripper to a special ring object. The vision information provided by microscope vision system is used as the feedback to indicate the position relationship between the gripper and the ring object. Multiple image features of the gripper and the ring object are extracted to estimate the relative positions between them. The end-effector of the gripper is tracked using the extracted features to keep the gripper moving in the field of view. The force information from the force sensor serves as the feedback to ensure that the contact force between the gripper and the ring object is limited in a small safe range. Experimental results verify the effectiveness of the proposed control strategy. 展开更多
关键词 Feature extraction position/force hybrid control movement control microscope vision micro-assembly.
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部