We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary curre...We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.展开更多
A tip-tilt-piston 3×3 electrothermal micromirror array(MMA)integrated with temperature field-based position sensors is designed and fabricated in this work.The size of the individual octagonal mirror plates is as...A tip-tilt-piston 3×3 electrothermal micromirror array(MMA)integrated with temperature field-based position sensors is designed and fabricated in this work.The size of the individual octagonal mirror plates is as large as 1.6 mm×1.6 mm.Thermal isolation structures are embedded to reduce the thermal coupling among the micromirror units.Results show that each micromirror unit has a piston scan range of 218μm and a tip-tilt optical scan angle of 21°at only 5 Vdc.The micromirrors also exhibit good dynamic performance with a rise time of 51.2 ms and a fall time of 53.6 ms.Moreover,the on-chip position sensors are proven to be capable for covering the full-range movement of the mirror plate,with the measured sensitivities of 1.5 mV/μm and 8.8 mV/°in piston sensing and tip-tilt sensing,respectively.Furthermore,the thermal crosstalk in an operating MMA has been experimentally studied.The measured results are promising thanks to the embedded thermal isolation structures.展开更多
The large-scale touch position sensor as a key human-machine interface toolkit holds immense significance in smart city and home construction.However,prior alternatives suffer from high power consumption,material limi...The large-scale touch position sensor as a key human-machine interface toolkit holds immense significance in smart city and home construction.However,prior alternatives suffer from high power consumption,material limitations,and implementation costs.Herein,a self-powered and scalable touch position strategy that integrates contact electrification with a screen-printing technique is proposed.Simply,high-impedance electrodes with stagger patterns are screen-printed onto various substrates before being covered with a dielectric layer.The locating mechanism originates from the touch-generated triboelectric charge shunt effect in the electrodes.The screen-printing parameters that affect the positional accuracy are discussed in detail.Leveraging this strategy,we realize a tailorable and large-scale triboelectric touch position sensor(LTTPS)that offers flexibility,self-powered capability,and a minimized signal channel,making it suitable for various practical scenarios.Demonstrations include an intelligent bookshelf mat with book management functionality,a rollable and foldable film-like keyboard,and a 4 m2 walk-tracking carpet.The LTTPS in this work provides an appealing alternative for large-scale touch positioning and enriches human-machine interaction.展开更多
Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rat...Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.展开更多
This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the unc...This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. A...A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. After reflected by the object, the grating projection is imaged on a detection grating through another 4f optical system to form moiré fringes, The polarization modulated moiré signal is detected to obtain the position information of the object. In the position sensor, the moiré signal varies sinusoidally with the position of object. The measurement is independent of the incident intensity on the projection grating and the reflectivity of the object to be measured, In experiments, the effectiveness of the position sensor is proved, and the root mean square (RMS) error at each measurement position is less than 13 nm.展开更多
This article concentrates on the aeration efficiency of venturi air injectors in aquaculture or wastewater treatment.This study was designed to investigate the location of the dissolved oxygen(DO)sensor installation,w...This article concentrates on the aeration efficiency of venturi air injectors in aquaculture or wastewater treatment.This study was designed to investigate the location of the dissolved oxygen(DO)sensor installation,with a focus on investigating the aeration mechanism by studying ten variables,including temperature,pH,oxidation-reduction potential(ORP),electrical conductivity,resistivity,total dissolved solids,salinity,pressure,dissolved oxygen,and the effect of changing the position of DO sensor installations in different locations via oxygen transfer.The water temperature was raised due to the heating of the water pump.It ranged from 29.7°C to 32.78°C,with different temperatures resulting in different oxygen solubility.The pH level increased with the rise in oxygen levels due to an increase in OH-concentration,whereas the ORP decreased when oxygen levels rose,increasing the reduction reaction.A study on the effect of changing the position of DO sensor installations in different locations was discovered using oxygen transfer coefficients(K_(La))variables.The K_(La)values at nozzle depths of 15 cm,30 cm,and 45 cm were 0.0004±0.0001,0.00042±0.0001,and 0.00136±0.00013,respectively.Therefore,there is a slight difference of K_(La)value when changing the position of sensor installations.An inappropriate distance between the DO sensor and nozzle installation is able to cause turbulent flow.This event resulted in an incorrect DO value.Moreover,the installation of the DO sensor too far from the nozzle resulted in a low value of DO.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detecti...Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.展开更多
The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inve...The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.展开更多
The radiation positioning system (RADPOS) combines an electromagnetic positioning sensor with metal oxide semiconductor field-effect transistor (MOSFET) dosimetry, enabling simultaneous online measurement of dose and ...The radiation positioning system (RADPOS) combines an electromagnetic positioning sensor with metal oxide semiconductor field-effect transistor (MOSFET) dosimetry, enabling simultaneous online measurement of dose and spatial position. Evaluation points can be determined with the RADPOS. The accuracy of in-vivo proton dosimetry was evaluated using the RADPOS and an anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared with treatment plan values calculated using a simplified Monte Carlo (SMC) method. MOSFET responses, which depend strongly on the linear energy transfer of the proton beam, were corrected using the SMC method. The SMC method was used to calculate only dose deposition determined by the experimental depth-dose distribution and lateral displacement of protons due to the multiple scattering effect in materials and incident angle. This method thus enabled rapid calculation of accurate doses in even heterogeneities. In vivo dosimetry using the RADPOS, as well as MOSFET doses, agreed with SMC calculations in the range of ?3.0% to 8.3%. Most measurement errors occurred because of uncertainties in dose calculations due to the 1-mm position error. The results indicate that uncertainties in measurement position can be controlled successfully within 1 mm when using the RADPOS with in-vivo proton dosimetry.展开更多
The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the...The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.展开更多
An efficient solution for locating a target was proposed, which by using time difference of arrival (TDOA) measurements in the presence of random sensor position errors to increase the accuracy of estimation. The ca...An efficient solution for locating a target was proposed, which by using time difference of arrival (TDOA) measurements in the presence of random sensor position errors to increase the accuracy of estimation. The cause of position estimation errors in two-stage weighted least squares (TSWLS) method is analyzed to develop a simple and effective method for improving the localization performance. Specifically, the reference sensor is selected again and the coordinate system is rotated according to preliminary estimated target position by using TSWLS method, and the final position estimation of the target is obtained by using weighted least squares (WLS). The proposed approach exhibits a closed-form and is as efficient as TSWLS method. Simulation results show that the proposed approach yields low estimation bias and improved robustness with increasing sensor position errors and thus can easily achieve the Cramer-Rao lower bound (CRLB) easily and effectively improve the localization accuracy.展开更多
文摘We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.
基金funded in part by National Natural Science Foundation of China under Grants 62350710218,92373105 and 62074015National Key Research and Development Program of China(2023YFB3507300).
文摘A tip-tilt-piston 3×3 electrothermal micromirror array(MMA)integrated with temperature field-based position sensors is designed and fabricated in this work.The size of the individual octagonal mirror plates is as large as 1.6 mm×1.6 mm.Thermal isolation structures are embedded to reduce the thermal coupling among the micromirror units.Results show that each micromirror unit has a piston scan range of 218μm and a tip-tilt optical scan angle of 21°at only 5 Vdc.The micromirrors also exhibit good dynamic performance with a rise time of 51.2 ms and a fall time of 53.6 ms.Moreover,the on-chip position sensors are proven to be capable for covering the full-range movement of the mirror plate,with the measured sensitivities of 1.5 mV/μm and 8.8 mV/°in piston sensing and tip-tilt sensing,respectively.Furthermore,the thermal crosstalk in an operating MMA has been experimentally studied.The measured results are promising thanks to the embedded thermal isolation structures.
基金National Key Research and Development Program,Grant/Award Number:2021YFA1201602NSFC,Grant/Award Numbers:T2422003,52302219Fundamental Research Funds for the Central Universities,Grant/Award Numbers:2024CDTZCQ-012,2024CDJGF-031。
文摘The large-scale touch position sensor as a key human-machine interface toolkit holds immense significance in smart city and home construction.However,prior alternatives suffer from high power consumption,material limitations,and implementation costs.Herein,a self-powered and scalable touch position strategy that integrates contact electrification with a screen-printing technique is proposed.Simply,high-impedance electrodes with stagger patterns are screen-printed onto various substrates before being covered with a dielectric layer.The locating mechanism originates from the touch-generated triboelectric charge shunt effect in the electrodes.The screen-printing parameters that affect the positional accuracy are discussed in detail.Leveraging this strategy,we realize a tailorable and large-scale triboelectric touch position sensor(LTTPS)that offers flexibility,self-powered capability,and a minimized signal channel,making it suitable for various practical scenarios.Demonstrations include an intelligent bookshelf mat with book management functionality,a rollable and foldable film-like keyboard,and a 4 m2 walk-tracking carpet.The LTTPS in this work provides an appealing alternative for large-scale touch positioning and enriches human-machine interaction.
基金supported by the National Natural Science Foundation of China(No.52175269)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金Science and Technology Research Project of Education Department of Jilin Province(JJKH20231146KJ,JJKH20241262KJ)Project ZR2024ME104 supported by Shandong Provincial Natural Science FoundationChina Postdoctoral Science Foundation(No.2024M751086).
文摘Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.
文摘This paper delves into the problem of optimal placement conditions for a group of agents collaboratively localizing a target using range-only or bearing-only measurements.The challenge in this study stems from the uncertainty associated with the positions of the agents,which may experience drift or disturbances during the target localization process.Initially,we derive the Cramer-Rao lower bound(CRLB)of the target position as the primary analytical metric.Subsequently,we establish the necessary and sufficient conditions for the optimal placement of agents.Based on these conditions,we analyze the maximal allowable agent position error for an expected mean squared error(MSE),providing valuable guidance for the selection of agent positioning sensors.The analytical findings are further validated through simulation experiments.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
文摘A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. After reflected by the object, the grating projection is imaged on a detection grating through another 4f optical system to form moiré fringes, The polarization modulated moiré signal is detected to obtain the position information of the object. In the position sensor, the moiré signal varies sinusoidally with the position of object. The measurement is independent of the incident intensity on the projection grating and the reflectivity of the object to be measured, In experiments, the effectiveness of the position sensor is proved, and the root mean square (RMS) error at each measurement position is less than 13 nm.
基金support from the Faculty of Environmental Management,as well as the High-Potential Talent Fund to strengthen capabilities in the economic,social,and community sectors(Talent Utilization)Type 2 No.TU1-10/2564 from the Graduate School,Prince of Songkla University(PSU)the Southern Industrial Pollutions Research and Warning Center(DIW,Department of Industrial Works)for their invaluable academic guidance,technical resources,and facility support throughout this study.
文摘This article concentrates on the aeration efficiency of venturi air injectors in aquaculture or wastewater treatment.This study was designed to investigate the location of the dissolved oxygen(DO)sensor installation,with a focus on investigating the aeration mechanism by studying ten variables,including temperature,pH,oxidation-reduction potential(ORP),electrical conductivity,resistivity,total dissolved solids,salinity,pressure,dissolved oxygen,and the effect of changing the position of DO sensor installations in different locations via oxygen transfer.The water temperature was raised due to the heating of the water pump.It ranged from 29.7°C to 32.78°C,with different temperatures resulting in different oxygen solubility.The pH level increased with the rise in oxygen levels due to an increase in OH-concentration,whereas the ORP decreased when oxygen levels rose,increasing the reduction reaction.A study on the effect of changing the position of DO sensor installations in different locations was discovered using oxygen transfer coefficients(K_(La))variables.The K_(La)values at nozzle depths of 15 cm,30 cm,and 45 cm were 0.0004±0.0001,0.00042±0.0001,and 0.00136±0.00013,respectively.Therefore,there is a slight difference of K_(La)value when changing the position of sensor installations.An inappropriate distance between the DO sensor and nozzle installation is able to cause turbulent flow.This event resulted in an incorrect DO value.Moreover,the installation of the DO sensor too far from the nozzle resulted in a low value of DO.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
基金supported by the Plan for Science Innovation Talent of Henan Province(No.154100510007)the Natural and Science Foundation in Henan Province(No.162300410179)the Cultivation Foundation of Henan Normal University National Project(No.2017PL04)
文摘Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.
文摘The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.
文摘The radiation positioning system (RADPOS) combines an electromagnetic positioning sensor with metal oxide semiconductor field-effect transistor (MOSFET) dosimetry, enabling simultaneous online measurement of dose and spatial position. Evaluation points can be determined with the RADPOS. The accuracy of in-vivo proton dosimetry was evaluated using the RADPOS and an anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared with treatment plan values calculated using a simplified Monte Carlo (SMC) method. MOSFET responses, which depend strongly on the linear energy transfer of the proton beam, were corrected using the SMC method. The SMC method was used to calculate only dose deposition determined by the experimental depth-dose distribution and lateral displacement of protons due to the multiple scattering effect in materials and incident angle. This method thus enabled rapid calculation of accurate doses in even heterogeneities. In vivo dosimetry using the RADPOS, as well as MOSFET doses, agreed with SMC calculations in the range of ?3.0% to 8.3%. Most measurement errors occurred because of uncertainties in dose calculations due to the 1-mm position error. The results indicate that uncertainties in measurement position can be controlled successfully within 1 mm when using the RADPOS with in-vivo proton dosimetry.
文摘The main factors affecting the dynamic errors of coordinate measuring machines are analyzed. It is pointed out that there are two main contributors to the dynamic errors: One is the rotation of the elements around the joints connected with air bearings and the other is the bending of the elements caused by the dynamic inertial forces. A method for obtaining the displacement errors at the probe position from dynamic rotational errors is presented. The dynamic rotational errors are measured with inductive position sensors and a laser interferometer. The theoretical and experimental results both show that during the process of fast probing, due to the dynamic inertial forces, there are not only large rotation of the elements around the joints connected with air bearings but also large bending of the weak elements themselves.
基金supported by the National Natural Science Foundation of China (61271236, 61601245)the Open Research Program of the State Key Laboratory of Millimeter Waves (K201724)the China Postdoctoral Science Foundation Funded Project (2016M601693)
文摘An efficient solution for locating a target was proposed, which by using time difference of arrival (TDOA) measurements in the presence of random sensor position errors to increase the accuracy of estimation. The cause of position estimation errors in two-stage weighted least squares (TSWLS) method is analyzed to develop a simple and effective method for improving the localization performance. Specifically, the reference sensor is selected again and the coordinate system is rotated according to preliminary estimated target position by using TSWLS method, and the final position estimation of the target is obtained by using weighted least squares (WLS). The proposed approach exhibits a closed-form and is as efficient as TSWLS method. Simulation results show that the proposed approach yields low estimation bias and improved robustness with increasing sensor position errors and thus can easily achieve the Cramer-Rao lower bound (CRLB) easily and effectively improve the localization accuracy.