The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning s...The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.展开更多
For the underwater long baseline(LBL)positioning systems,the traditional distance intersection algorithm simplifies the sound speed to a constant,and calculates the underwa-ter target position parameters with a nonlin...For the underwater long baseline(LBL)positioning systems,the traditional distance intersection algorithm simplifies the sound speed to a constant,and calculates the underwa-ter target position parameters with a nonlinear iteration.However,due to the complex underwater environment,the sound speed changes with time and space,and then the acoustic propagation path is actually a curve,which inevitably causes some errors to the traditional distance intersection positioning algorithm.To reduce the position error caused by the uncertain underwater sound speed,a new time of arrival(TOA)intersection underwater positioning algorithm of LBL system is proposed.Firstly,combined with the vertical layered model of the underwater sound speed,an implicit positioning model of TOA intersection is constructed through the constant gradient acoustic ray tracing.And then an optimization function based on the overall TOA residual square sum is advanced to solve the position parameters for the underwater target.Moreover,the particle swarm optimization(PSO)algorithm is replaced with the tra-ditional nonlinear least square method to optimize the implicit positioning model of TOA intersection.Compared with the traditional distance intersection positioning model,the TOA intersec-tion positioning model is more suitable for the engineering practice and the optimization algorithm is more effective.Simulation results show that the proposed methods in this paper can effectively improve the positioning accuracy for the underwater target.展开更多
The two-station positioning system based on time difference and azimuth measurement has measurement redundancy. Therefore, not only can a positioning solution which is completely independent of the baseline length bet...The two-station positioning system based on time difference and azimuth measurement has measurement redundancy. Therefore, not only can a positioning solution which is completely independent of the baseline length between two stations be derived, but also the baseline length can be solved as an unknown quantity. These findings not only enhance the performance of the two-station positioning system, but also provide a design basis for the construction of a self-organizing dynamic intelligent positioning system.展开更多
The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of ...The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of the radiated noise. To eliminate this, the track estimation is necessary. In the DPS method, we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method. Meanwhile, the emitted and recorded time of each pulse are also acquired. Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing. The simulated results confirm that the DPS improves the performance of the previous double source spacing method. The simulated experiments were carried out using a moving battery car to further evaluate its performance. When the target is 40-60m away, the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6° and 3.4m, respectively. And the average deviation of estimated velocity is around 0.25m/s.展开更多
基金Supported by the National Defense Basic Foundation of China B2420710007
文摘The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.
基金supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘For the underwater long baseline(LBL)positioning systems,the traditional distance intersection algorithm simplifies the sound speed to a constant,and calculates the underwa-ter target position parameters with a nonlinear iteration.However,due to the complex underwater environment,the sound speed changes with time and space,and then the acoustic propagation path is actually a curve,which inevitably causes some errors to the traditional distance intersection positioning algorithm.To reduce the position error caused by the uncertain underwater sound speed,a new time of arrival(TOA)intersection underwater positioning algorithm of LBL system is proposed.Firstly,combined with the vertical layered model of the underwater sound speed,an implicit positioning model of TOA intersection is constructed through the constant gradient acoustic ray tracing.And then an optimization function based on the overall TOA residual square sum is advanced to solve the position parameters for the underwater target.Moreover,the particle swarm optimization(PSO)algorithm is replaced with the tra-ditional nonlinear least square method to optimize the implicit positioning model of TOA intersection.Compared with the traditional distance intersection positioning model,the TOA intersec-tion positioning model is more suitable for the engineering practice and the optimization algorithm is more effective.Simulation results show that the proposed methods in this paper can effectively improve the positioning accuracy for the underwater target.
文摘The two-station positioning system based on time difference and azimuth measurement has measurement redundancy. Therefore, not only can a positioning solution which is completely independent of the baseline length between two stations be derived, but also the baseline length can be solved as an unknown quantity. These findings not only enhance the performance of the two-station positioning system, but also provide a design basis for the construction of a self-organizing dynamic intelligent positioning system.
文摘The double pulse sources (DPS) method is presented for linear track estimation in this work. In the field of noise identification of underwater moving target, the Doppler will distort the frequency and amplitude of the radiated noise. To eliminate this, the track estimation is necessary. In the DPS method, we first estimate bearings of two sinusoidal pulse sources installed in the moving target through baseline positioning method. Meanwhile, the emitted and recorded time of each pulse are also acquired. Then the linear track parameters will be achieved based on the geometry pattern with the help of double sources spacing. The simulated results confirm that the DPS improves the performance of the previous double source spacing method. The simulated experiments were carried out using a moving battery car to further evaluate its performance. When the target is 40-60m away, the experiment results show that biases of track azimuth and abeam distance of DPS are under 0.6° and 3.4m, respectively. And the average deviation of estimated velocity is around 0.25m/s.