Graph convolutional network(GCN)as an essential tool in human action recognition tasks have achieved excellent performance in previous studies.However,most current skeleton-based action recognition using GCN methods u...Graph convolutional network(GCN)as an essential tool in human action recognition tasks have achieved excellent performance in previous studies.However,most current skeleton-based action recognition using GCN methods use a shared topology,which cannot flexibly adapt to the diverse correlations between joints under different motion features.The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms.In this work,we propose a novel graph convolutional learning framework,called PCCTR-GCN,which integrates pose correction and channel topology refinement for skeleton-based human action recognition.Firstly,a pose correction module(PCM)is introduced,which corrects the pose coordinates of the input network to reduce the error in pose feature extraction.Secondly,channel topology refinement graph convolution(CTR-GC)is employed,which can dynamically learn the topology features and aggregate joint features in different channel dimensions so as to enhance the performance of graph convolution networks in feature extraction.Finally,considering that the joint stream and bone stream of skeleton data and their dynamic information are also important for distinguishing different actions,we employ a multi-stream data fusion approach to improve the network’s recognition performance.We evaluate the model using top-1 and top-5 classification accuracy.On the benchmark datasets iMiGUE and Kinetics,the top-1 classification accuracy reaches 55.08%and 36.5%,respectively,while the top-5 classification accuracy reaches 89.98%and 59.2%,respectively.On the NTU dataset,for the two benchmark RGB+Dsettings(X-Sub and X-View),the classification accuracy achieves 89.7%and 95.4%,respectively.展开更多
A symmetrical heterodyne grating interferometer with both a short period and high signal-to-noise ratio is proposed. It possesses good immunity to environmental disturbances and can simultaneously achieve high resolut...A symmetrical heterodyne grating interferometer with both a short period and high signal-to-noise ratio is proposed. It possesses good immunity to environmental disturbances and can simultaneously achieve high resolution and stability. The experimental results show that the standard deviation of 24.67 nm can be realized for the long range of 10 mm. The measurement resolution of better than 2 nm is achieved with the theoretical resolution of 12 pm. Additionally, system stability at less than 1.5 nm is obtained in just over 10 min. The measurement errors, including cosine error, nonlinear error and non-common path error, are discussed as well.展开更多
基金The Fundamental Research Funds for the Central Universities provided financial support for this research.
文摘Graph convolutional network(GCN)as an essential tool in human action recognition tasks have achieved excellent performance in previous studies.However,most current skeleton-based action recognition using GCN methods use a shared topology,which cannot flexibly adapt to the diverse correlations between joints under different motion features.The video-shooting angle or the occlusion of the body parts may bring about errors when extracting the human pose coordinates with estimation algorithms.In this work,we propose a novel graph convolutional learning framework,called PCCTR-GCN,which integrates pose correction and channel topology refinement for skeleton-based human action recognition.Firstly,a pose correction module(PCM)is introduced,which corrects the pose coordinates of the input network to reduce the error in pose feature extraction.Secondly,channel topology refinement graph convolution(CTR-GC)is employed,which can dynamically learn the topology features and aggregate joint features in different channel dimensions so as to enhance the performance of graph convolution networks in feature extraction.Finally,considering that the joint stream and bone stream of skeleton data and their dynamic information are also important for distinguishing different actions,we employ a multi-stream data fusion approach to improve the network’s recognition performance.We evaluate the model using top-1 and top-5 classification accuracy.On the benchmark datasets iMiGUE and Kinetics,the top-1 classification accuracy reaches 55.08%and 36.5%,respectively,while the top-5 classification accuracy reaches 89.98%and 59.2%,respectively.On the NTU dataset,for the two benchmark RGB+Dsettings(X-Sub and X-View),the classification accuracy achieves 89.7%and 95.4%,respectively.
基金supported by the National Natural Science Foundation of China under Grant No.51275523
文摘A symmetrical heterodyne grating interferometer with both a short period and high signal-to-noise ratio is proposed. It possesses good immunity to environmental disturbances and can simultaneously achieve high resolution and stability. The experimental results show that the standard deviation of 24.67 nm can be realized for the long range of 10 mm. The measurement resolution of better than 2 nm is achieved with the theoretical resolution of 12 pm. Additionally, system stability at less than 1.5 nm is obtained in just over 10 min. The measurement errors, including cosine error, nonlinear error and non-common path error, are discussed as well.