The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical cal...The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical calculation by using Poincaré surface section is used to get the invariant tori for our problem.展开更多
大学物理实验中混沌实验大多采用观察现象的方法进行,本实验采用蔡氏电路(Chua s circuit)产生混沌行为.在观察不同初始值条件下出现的倍周期分岔、阵发混沌、奇异吸引子等相图及现象的基础上,通过对采集数据进行处理,对负电阻伏安特性...大学物理实验中混沌实验大多采用观察现象的方法进行,本实验采用蔡氏电路(Chua s circuit)产生混沌行为.在观察不同初始值条件下出现的倍周期分岔、阵发混沌、奇异吸引子等相图及现象的基础上,通过对采集数据进行处理,对负电阻伏安特性进行分段线性拟合,用功率频谱法、计算机仿真方法(龙格-库塔数值积分法)对混沌现象进行描绘,将实验数据与非线性方程组的数值解相结合,呈现出混沌现象的本质.展开更多
用数值方法对一类参数激励的非线性DUffing-Van der Pol振子进行了研究.着重考察了系统随周期驱动力角频率ω改变的周期分岔序列及混沌行为.给出了各种振荡态和混沌态随时间的循环模式.发现在一定的ω值区间内,周期运动和混沌运动交替出...用数值方法对一类参数激励的非线性DUffing-Van der Pol振子进行了研究.着重考察了系统随周期驱动力角频率ω改变的周期分岔序列及混沌行为.给出了各种振荡态和混沌态随时间的循环模式.发现在一定的ω值区间内,周期运动和混沌运动交替出现,周期运动会失稳直接进入混沌态.对通向混沌的道路问题也作了一些探讨.展开更多
文摘The phase portrait of the functions obtained by Hamilton-Jacobi equations is substantiated, and the classification of singular points is found, and the bifurcation diagram for the problem is studied. The numerical calculation by using Poincaré surface section is used to get the invariant tori for our problem.
文摘大学物理实验中混沌实验大多采用观察现象的方法进行,本实验采用蔡氏电路(Chua s circuit)产生混沌行为.在观察不同初始值条件下出现的倍周期分岔、阵发混沌、奇异吸引子等相图及现象的基础上,通过对采集数据进行处理,对负电阻伏安特性进行分段线性拟合,用功率频谱法、计算机仿真方法(龙格-库塔数值积分法)对混沌现象进行描绘,将实验数据与非线性方程组的数值解相结合,呈现出混沌现象的本质.
文摘用数值方法对一类参数激励的非线性DUffing-Van der Pol振子进行了研究.着重考察了系统随周期驱动力角频率ω改变的周期分岔序列及混沌行为.给出了各种振荡态和混沌态随时间的循环模式.发现在一定的ω值区间内,周期运动和混沌运动交替出现,周期运动会失稳直接进入混沌态.对通向混沌的道路问题也作了一些探讨.