期刊文献+
共找到397篇文章
< 1 2 20 >
每页显示 20 50 100
Changing the pore structure and surface chemistry of hard carbon by coating it with a soft carbon to boost high-rate sodium storage
1
作者 ZHONG Qin MO Ying +9 位作者 ZHOU Wang ZHENG Biao WU Jian-fang LIU Guo-ku Mohd Zieauddin Kufian Zurina Osman XU Xiong-wen GAO Peng YANG Le-zhi LIU Ji-lei 《新型炭材料(中英文)》 北大核心 2025年第3期651-665,共15页
Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy wi... Changes to the microstructure of a hard carbon(HC)and its solid electrolyte interface(SEI)can be effective in improving the electrode kinetics.However,achieving fast charging using a simple and inexpensive strategy without sacrificing its initial Coulombic efficiency remains a challenge in sodium ion batteries.A simple liquid-phase coating approach has been used to generate a pitch-derived soft carbon layer on the HC surface,and its effect on the porosity of HC and SEI chemistry has been studied.A variety of structural characterizations show a soft carbon coating can increase the defect and ultra-micropore contents.The increase in ultra-micropore comes from both the soft carbon coatings and the larger pores within the HC that are partially filled by pitch,which provides more Na+storage sites.In-situ FTIR/EIS and ex-situ XPS showed that the soft carbon coating induced the formation of thinner SEI that is richer in NaF from the electrolyte,which stabilized the interface and promoted the charge transfer process.As a result,the anode produced fastcharging(329.8 mAh g^(−1)at 30 mA g^(−1)and 198.6 mAh g^(−1)at 300 mA g^(−1))and had a better cycling performance(a high capacity retention of 81.4%after 100 cycles at 150 mA g^(−1)).This work reveals the critical role of coating layer in changing the pore structure,SEI chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced fast charging capability. 展开更多
关键词 Hard carbon Pitch-derived carbon coating Sodium-ion batteries pore structure Surface chemistry
在线阅读 下载PDF
Modifying the pore structure of biomass-derived porous carbon for use in energy storage systems
2
作者 XIE Bin ZHAO Xin-ya +5 位作者 MA Zheng-dong ZHANG Yi-jian DONG Jia-rong WANG Yan BAI Qiu-hong SHEN Ye-hua 《新型炭材料(中英文)》 北大核心 2025年第4期870-888,共19页
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structur... The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure,environmental friendliness,and cost-effectiveness.Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed,emphasizing the critical role of a balanced distribution of micropores,mesopores and macropores in determining electrochemical behavior.Particular attention is given to how the intrinsic components of biomass precursors(lignin,cellulose,and hemicellulose)influence pore formation during carbonization.Carbonization and activation strategies to precisely control the pore structure are introduced.Finally,key challenges in the industrial production of these carbons are outlined,and future research directions are proposed.These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering,aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices. 展开更多
关键词 Energy storage systems Porous carbon Biomass precursors pore structure Machine learning-assisted
在线阅读 下载PDF
Tailoring the pore structure of hard carbon for enhanced sodium-ion battery anodes
3
作者 SONG Ning-Jing MA Can-liang +3 位作者 GUO Nan-nan ZHAO Yun LI Wan-xi LI Bo-qiong 《新型炭材料(中英文)》 北大核心 2025年第2期377-391,共15页
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv... Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials. 展开更多
关键词 pore structure regulation Closed pore Corn cob Hard carbon anode material Sodium-ion batteries
在线阅读 下载PDF
Organic Matter Occurrence and Its Effects on Pore Structure and Methane Adsorption Capacity:A Case Study of the Niutitang Black Shale in Guizhou,China
4
作者 Peng Xia Fang Hao +5 位作者 Jinqiang Tian Yong Fu Yuliang Mou Chuan Guo Zhen Yang Ke Wang 《Journal of Earth Science》 2025年第2期597-610,共14页
The black shale samples from the Niutitang Formation in the Yangtze Block were sequentially treated using organic solvent extraction and wet chemical oxidation.The organic matter(OM)in the shales includes physically m... The black shale samples from the Niutitang Formation in the Yangtze Block were sequentially treated using organic solvent extraction and wet chemical oxidation.The organic matter(OM)in the shales includes physically mobile OM(PmOM),chemically mobile OM(CmOM),and stable OM(StOM).The CmOM has the strongest CH_(4)adsorption capacity because it has the largest volume of micropores and mesopores.In contrast,the PmOM has a very negative effect on the CH_(4)adsorption because it is poreless.The XD shale is a siliceous shale,in which the quartz particles wrap partly OM,preventing extraction and oxidation.The SL shale is an argillaceous shale,in which most of the OM is combined with clay minerals to form organo-clay composites.In both the SL and XD shales,the OM that is extractable via organic solvents is distributed among the mineral particles and is interconnected.The conceptual model of marine black shale in different environments needs to be perfected in the future because quantitative and qualitative methods should be combined to clarify the relationship between the known OM types(e.g.,pyrobitumen,solid bitumen,and solid kerogen)and the OM types identified in this study. 展开更多
关键词 organic matter pore structure black shales shale gas Early Cambrian petroleum geology
原文传递
Geochemistry and Reservoir Characteristics of Jurassic Lacustrine Shale in the Sichuan Basin:Insights from Paleoenvironmental Constraints on Pore Structure
5
作者 LI Delu LI Haibin +7 位作者 LI Wangpeng HE Qianyang SUN Qiang WANG Zilong WANG Xingzhe WANG Fei LIU Cun GAO Yi 《Acta Geologica Sinica(English Edition)》 2025年第4期1153-1168,共16页
Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon explorati... Pore structure directly affects the occurrence and migration of shale hydrocarbon,and the lack of research on the mechanism of the pore structure is an important reason for the hindrance of shale hydrocarbon exploration.By analysing the geochemistry and reservoir characteristics of Jurassic lacustrine shales in Sichuan Basin,this study recovers their paleoenvironments and further discusses paleoenvironmental constraints on pore structure.The results show that the Lower Jurassic lacustrine shales in the Sichuan Basin are in a warm and humid semi-anoxic to anoxic lake environment with high productivity,a strong stagnant environment,and a rapid sedimentation rate,with water depths ranging from about 11.54-55.22 m,and a mixture of type Ⅱ/Ⅲ kerogen is developed.In terms of reservoir characteristics,they are dominated by open-slit pores,and the pores are relatively complex.The percentage of mesopores is the highest,while the percentage of macropores is the lowest.Further analysis shows that paleoclimate controls the overall pore complexity and surface relaxation of shales by influencing the weathering rate of mother rocks.Paleoredox conditions control the proportion and complexity of shale pores by influencing TOC content.The research results will provide theoretical basis for improving the exploration efficiency of lacustrine shale resources and expanding exploration target areas. 展开更多
关键词 PALEOENVIRONMENT pore structure constraining effect lacustrine shale Sichuan Basin
在线阅读 下载PDF
Impact of dissolution and precipitation on pore structure in CO_(2)sequestration within tight sandstone reservoirs
6
作者 Hui Gao Kai-Qing Luo +6 位作者 Chen Wang Teng Li Zhi-Lin Cheng Liang-Bin Dou Kai Zhao Nan Zhang Yue-Liang Liu 《Petroleum Science》 2025年第2期868-883,共16页
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens... Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs. 展开更多
关键词 DISSOLUTION PRECIPITATION pore structure CO_(2)sequestration Unconventional reservoirs
原文传递
Analysis of volcanic rock pore structure by high-pressure mercury injection combined with fractal theory
7
作者 NIU Penghui HAN Lei 《Global Geology》 2025年第3期173-185,共13页
The pore structure of rocks significantly influences the porosity and permeability of reservoirs and the migration ability of oil and gas,and being the key task on the development of volcanic gas reservoirs.Nine volca... The pore structure of rocks significantly influences the porosity and permeability of reservoirs and the migration ability of oil and gas,and being the key task on the development of volcanic gas reservoirs.Nine volcanic rock samples from the Yingcheng Formation and Huoshiling Formation in the Longfengshan area of the Changling Fault Depression in the Songliao Basin were selected for this study.The pore structures of the volcanic rocks in the study area were investigated using high-pressure mercury injection,X-ray diffraction combined with fractal theory.The relationships between the fractal dimension and physical properties characteristics,pore structure parameters,and mineral content were analyzed to provide guidance for the development of volcanic rock gas reservoirs.The results show that the reservoir can be divided into 3 types(I,II,and III)based on the shape of the capillary pressure curve,and the physical properties deteriorate successively.Different types of reservoirs exhibit different fractal characteristics.For typesⅠ,ⅡandⅢ,the average total fractal dimensions were 2.3418,2.6850,and 2.9203,respectively.The larger the fractal dimension,the stronger the heterogeneity of reservoir.A small number of macro-pores primarily contributed to permeability.The fractal dimension was negatively correlated with porosity and permeability.The fractal dimension of the rock was strongly correlated with quartz and feldspar contents,and the mineral composition and content are closely related to the pore evolution of the reservoir,which are the internal factors affecting the fractal dimension of volcanic rock. 展开更多
关键词 Longfengshan area volcanic rock high-pressure mercury injection pore structure fractal dimension
在线阅读 下载PDF
Insights into the pore structure and hydrocarbon accumulation of lacustrine organic-rich shales
8
作者 Xiao-Jiao Pang Gui-Wen Wang +4 位作者 Yong-Jia Zhang Da-Li Yue Hong-Bin Li Li-Chun Kuang Chao-Liu Li 《Petroleum Science》 2025年第3期957-976,共20页
With the development of unconventional hydrocarbon, how to improve the shale oil and gas recovery become urgent. Therefore hydraulic fracturing becomes the key due to the complicated properties of the reservoirs. The ... With the development of unconventional hydrocarbon, how to improve the shale oil and gas recovery become urgent. Therefore hydraulic fracturing becomes the key due to the complicated properties of the reservoirs. The pore structure not only plays an essential role in the formation of complex fracture networks after fracturing but also in resource accumulation mechanism analyses. The lacustrine organicrich shale samples were selected to carry out petrophysical experiments. Scanning Electron Microscopy(SEM) and X-ray Diffraction were performed to elucidate the geology characteristics. MICP, 2D NMR, CT,and N2adsorption were conducted to classify the pore structure types. The contribution of pore structure to oil accumulation and hydrocarbon enrichment was explained through the N2adsorption test on the original and extracted state and 2D NMR. The results show that micropores with diameter less than20 nm are well-developed. The pore structure was divided into three types. Type Ⅰ is characterized by high porosity, lower surface area, and good pore throat connectivity, with free oil existing in large pores,especially lamellation fractures. The dominant nano-pores are spongy organic pores and resources hosted in large pores have been expelled during high thermal evolution. The content of nano-pores(micropores) increases and the pore volume decreases in Type Ⅱ pore structure. In addition, more absorbed oil was enriched. The pore size distribution of type Ⅱ is similar to that of type Ⅰ. However, the maturity and hydrocarbon accumulation is quite different. The oil reserved in large pores was not expelled attributed to the relatively low thermal evolution compared with type Ⅰ. Structural vitrinite was observed through SEM indicating kerogen of type Ⅲ developed in this kind of reservoir while the type of kerogen in pore structure Ⅰ is type Ⅱ. Type Ⅲ pore structure is characterized by the largest surface area,lowest porosity, and almost isolated pores with rarely free oil. Type Ⅰ makes the most contribution to hydrocarbon accumulation and immigration, which shows the best prospect. Of all of these experiments,N2adsorption exhibits the best in characterizing pores in shales due to its high resolution for the assessment of nano-scale pores. MICP and NMR have a better advantage in characterizing pore space of sandstone reservoirs, even tight sandstone reservoirs. 2D NMR plays an essential role in fluid recognition and saturation calculation. CT scanning provides a 3D visualization of reservoir space and directly shows the relationship between pores and throats and the characteristics of fractures. This study hopes to guide experiment selection in pore structure characterization in different reservoirs. This research provides insight into hydrocarbon accumulation of shales and guidance in the exploration and development of unconventional resources, for example for geothermal and CCUS reservoirs. 展开更多
关键词 Shale oil pore structure Nitrogen adsorption 2D NMR Hydrocarbon accumulation
原文传递
Pore structure variation characteristics of a Chinese local mudstone before and after the first cycle of wetting and drying
9
作者 ZHANG Qing-song LIU Zhi-bin +3 位作者 TANG Ya-sen DENG Yong-feng LUO Ting-yi MENG Fan-xing 《Journal of Central South University》 2025年第2期582-596,共15页
As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ... As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles. 展开更多
关键词 MUDSTONE wetting and drying cycle X-ray micro-computed tomography pore structure pore morphology
在线阅读 下载PDF
Effect of Pore Structure on Purification of Pervious Concrete
10
作者 Xinping Li Xiling Zhou 《Journal of Architectural Research and Development》 2025年第2期1-8,共8页
By adding zeolite aggregate with good adsorption properties,different mix ratios of added zeolite pervious concrete(ZPC)were designed to compare the water purification effect of ordinary pervious concrete and water pu... By adding zeolite aggregate with good adsorption properties,different mix ratios of added zeolite pervious concrete(ZPC)were designed to compare the water purification effect of ordinary pervious concrete and water purification tests that were conducted.The pore characteristics of the pervious concrete were identified using three-dimensional reconstruction software and the relationship between pore structure and water purification performance was quantified by gray entropy correlation analysis.The results showed that the purification efficiency of zeolite-doped pervious concrete was 17.6%-22.3%higher than that of ordinary pervious concrete.The characteristic parameters of the pore structure of permeable concrete,i.e.planar porosity and tortuosity,were determined using three-dimensional reconstruction software.The correlation between the degree of tortuosity and the removal rate reached more than 0.90,indicating that the internal pore structure of pervious concrete has a good correlation with the water purification performance. 展开更多
关键词 Pervious concretes Water purification pore structure characteristics CT scanning
在线阅读 下载PDF
Microwave-assisted heating on sandstone subjected to liquid nitrogen freeze-thaw:Pore structures and temperature characteristics
11
作者 Zairong Yang Chaolin Wang +1 位作者 Yu Zhao Jing Bi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5615-5630,共16页
Liquid nitrogen(LN_(2))and microwave are the alternative methods for reservoir fracturing,which are rarely combined.To investigate the combined effects,sandstone is frozen with LN_(2)before microwave heating(MI),and n... Liquid nitrogen(LN_(2))and microwave are the alternative methods for reservoir fracturing,which are rarely combined.To investigate the combined effects,sandstone is frozen with LN_(2)before microwave heating(MI),and nuclear magnetic resonance(NMR),ultrasonic wave,and infrared thermal imaging(ITI)are used to understand the pore structures,moisture change,and surface temperature of the sandstone samples.With the heating time,the average surface temperature of the combining-treatment samples firstly increases from the room temperature(25℃)to 144.7℃(65 s)fast,and then increases slowly to 176.6℃(95 s).For the individual MI,the temperature increases to 146.7℃at 65 s.As 30 min of LN_(2)freezing,the samples perform well in removing pore water during heating.The NMR results show that after LN_(2)freezing,the seepage pores and total pores increase by 2.93%and 4.11%,respectively,and the pore connectivity enhances.However,the individual MI performs weak in enhancing the pore structures,forming a high vapor pressure(0.428 MPa at 65 s)and causing burst after 65 s.Due to the improved pore connectivity,the vapor pressure(0.378 MPa)and temperature are small at 65 s,and burst can be avoided.After freezing,the wave velocity decreases by 13.48%and the damage variable reaches 0.251.The velocity attenuation rates and damage variable gradually increase with heating time;under the same duration,the two variables of the combining treatments are greater than that of the individual treatments.This can prove a reference for gas production in sandstone reservoirs. 展开更多
关键词 Sandstone gas Liquid nitrogen(LN_(2)) MICROWAVE pore structures
在线阅读 下载PDF
Enhanced permeability mechanism in coal seams through liquid nitrogen immersion:multi-scale pore structure analysis
12
作者 LI Xue-long CHEN De-you +5 位作者 LIU Shu-min WANG Deng-ke SUN Hai-tao YIN Da-wei ZHANG Yong-gang GONG Bin 《Journal of Central South University》 2025年第7期2732-2749,共18页
The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for e... The geological structure of coal seams in China is remarkably varied and complex,with coalbed methane reservoirs marked by significant heterogeneity and low permeability,creating substantial technical challenges for efficient extraction.This study systematically investigates the impact of liquid nitrogen immersion(LNI)on the coal’s pore structure and its mechanism of enhancing permeability with a combination of quantitative nuclear magnetic resonance(NMR)analysis,nitrogen adsorption experiments,and fractal dimension calculations.The results demonstrate that LNI can damage the coal’s pore structure and promote fracture expansion through thermal stress induction and moisture phase transformation,thereby enhancing the permeability of coal seams.The T_(2)peak area in the NMR experiments on coal samples subjected to LNI treatment shows a significant increase,the Brunauer-Emmett-Teller(BET)specific surface area decreases to 6.02 m^(2)/g,and the Barrett-Joyner-Halenda(BJH)total pore volume increases to 14.99 mm^(3)/g.Furthermore,changes in fractal dimensions(D_(1)rising from 2.804 to 2.837,and D_(2)falling from 2.757 to 2.594)indicate a notable enhancement in the complexity of the pore structure.With increasing LNI cycles,the adsorption capacity of the coal samples diminishes,suggesting a significant optimization of the pore structure.This optimization is particularly evident in the reconstruction of the micropore structure,which in turn greatly enhances the complexity and connectivity of the sample’s pore network.In summary,the study concludes that LNI technology can effectively improve the permeability of coal seams and the extraction efficiency of coalbed methane by optimizing the micropore structure and enhancing pore connectivity,which offers a potential method for enhancing the permeability of gas-bearing coal seams and facilitating the development and utilization of coalbed methane. 展开更多
关键词 liquid nitrogen immersion(LNI) coal seam pore structure PERMEABILITY nuclear magnetic resonance(NMR) fractal dimension
在线阅读 下载PDF
Influence of pore structure heterogeneity on channeling channels during hot water flooding in heavy oil reservoir based on CT scanning 被引量:1
13
作者 Qing-Jun Du Hao-Yu Zheng +3 位作者 Jian Hou Yong-Ge Liu Jian-Fang Sun Dong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2407-2419,共13页
Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s... Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil. 展开更多
关键词 Heavy oil Hot water flooding pore structure Channeling channels CT scanning
原文传递
Effect of high-multiple water injection on rock pore structure and oil displacement efficiency 被引量:1
14
作者 Xiao Lei Chunpeng Zhao +2 位作者 Qiaoliang Zhang Panrong Wang Runfu Xiong 《Energy Geoscience》 EI 2024年第1期234-238,共5页
Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected por... Experimental methods,including mercury pressure,nuclear magnetic resonance(NMR)and core(wateroil)displacement,are used to examine the effects of high-multiple water injection(i.e.water injection with high injected pore volume)on rock properties,pore structure and oil displacement efficiency of an oilfield in the western South China Sea.The results show an increase in the permeability of rocks along with particle migration,an increase in the pore volume and the average pore throat radius,and enhanced heterogeneity after high-multiple water injection.Compared with normal water injection methods,a high-multiple water injection is more effective in improving the oil displacement efficiency.The degree of recovery increases faster in the early stage due to the expansion of the swept area,and the transition from oil-wet to water-wet.The degree of recovery increases less in the late stage due to various factors,including the enhancement of heterogeneity in the rocks.Considering both the economic aspect and the production limit of water flooding,it is recommended to adopt other technologies to further enhance oil recovery after 300 PV water injection. 展开更多
关键词 High multiple Water injection Rock permeability pore structure Oil displacement efficiency
在线阅读 下载PDF
Multi-Scale Pore Structure Heterogeneity in Tuff Reservoirs Investigated with Multi-Experimental Method and Fractal Dimensions in Chang 7 Formation,Southern Ordos Basin
15
作者 Hao Lu Qing Li +4 位作者 Dali Yue Dongdong Xia Shenghe Wu Lang Wen Yu He 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期666-686,共21页
The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs.... The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs.Using the Chang 7 Formation in Ordos Basin,China as a case study,carbon-dioxide gas adsorption,nitrogen gas adsorption and high-pressure mercury injection are integrated to investigate the multi-scale pore structure characteristics of tuff reservoirs.Meanwhile,the fractal dimension is introduced to characterize the complexity of pore structure in tuff reservoirs.By this multi-experimental method,the quantitative characterizations of the full-range pore size distribution of four tuff types were obtained and compared in the size ranges of micropores,mesopores and macropores.Fractal dimension curves derived from full-range pores are divided into six segments as D1,D2,D3,D4,D5 and D6 corresponding to fractal characteristics of micropores,smaller mesopores,larger mesopores,smaller macropores,medium macropores and larger macropores,respectively.The macropore volume,average macropore radius and fractal dimension D5 significantly control petrophysical properties.The larger macropore volume,average macropore radius and D5 correspond to favorable pore structure and good reservoir quality,which provides new indexes for the tuff reservoir evaluation.This study enriches the understanding of the heterogeneity of pore structures and contributes to unconventional oil and gas exploration and development. 展开更多
关键词 tuff reservoir pore structure carbon-dioxide gas adsorption nitrogen gas adsorption high-pressure mercury injection fractal dimension petroleum geology
原文传递
Pore structure and oxygen content design of amorphous carbon toward a durable anode for potassium/sodium-ion batteries
16
作者 Xiaodong Shi Chuancong Zhou +7 位作者 Yuxin Gao Jinlin Yang Yu Xie Suyang Feng Jie Zhang Jing Li Xinlong Tian Hui Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期184-194,共11页
Both sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)are considered as promising candidates in grid-level energy storage devices.Unfortunately,the larger ionic radii of K+and Na+induce poor diffusion kineti... Both sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)are considered as promising candidates in grid-level energy storage devices.Unfortunately,the larger ionic radii of K+and Na+induce poor diffusion kinetics and cycling stability of carbon anode materials.Pore structure regulation is an ideal strategy to promote the diffusion kinetics and cyclic stability of carbon materials by facilitating electrolyte infiltration,increasing the transport channels,and alleviating the volume change.However,traditional pore-forming agent-assisted methods considerably increase the difficulty of synthesis and limit practical applications of porous carbon materials.Herein,porous carbon materials(Ca-PC/Na-PC/K-PC)with different pore structures have been prepared with gluconates as the precursors,and the amorphous structure,abundant micropores,and oxygen-doping active sites endow the Ca-PC anode with excellent potassium and sodium storage performance.For PIBs,the capacitive contribution ratio of Ca-PC is 82%at 5.0 mV s^(-1) due to the introduction of micropores and high oxygen-doping content,while a high reversible capacity of 121.4 mAh g^(-1) can be reached at 5 A g^(-1) after 2000 cycles.For SIBs,stable sodium storage capacity of 101.4 mAh g^(-1) can be achieved at 2 A g^(-1) after 8000 cycles with a very low decay rate of 0.65%for per cycle.This work may provide an avenue for the application of porous carbon materials in the energy storage field. 展开更多
关键词 oxygen doping pore structure porous carbon potassium-ion batteries sodium-ion batteries
在线阅读 下载PDF
Effect of cyclic hydraulic stimulation on pore structure and methane sorption characteristics of anthracite coal: A case study in the Qinshui Basin, China
17
作者 Rui-Shuai Ma Ji-Yuan Zhang +2 位作者 Qi-Hong Feng Xue-Ying Zhang Yan-Hui Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3271-3287,共17页
The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorp... The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions. 展开更多
关键词 Coalbed methane Cyclic hydraulic stimulation pore structure Methane sorption characteristics Fractal analysis
原文传递
Experimental investigation on pyrolysis products and pore structure characteristics of organic-rich shale heated by supercritical carbon dioxide
18
作者 Bai-Shuo Liu Chuan-Jin Yao +3 位作者 Jia-Long Qi Ya-Qian Liu Liang Xu Jing-Xuan Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2393-2406,共14页
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox... The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis. 展开更多
关键词 Organic-rich shale Supercritical carbon dioxide In-situ pyrolysis pore structure Core size and region
原文传递
Influence of tectonic preservation conditions on the nanopore structure of shale reservoir:A case study of Wufeng-Longmaxi Formation shale in western Hubei area,south China
19
作者 Meng Xiang Shang Xu +2 位作者 Ya-Ru Wen Qi-Yang Gou Bing-Chang Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2203-2217,共15页
Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accu... Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots. 展开更多
关键词 Shale gas pore structure Tectonic preservation conditions Shale gas enrichment mechanism
原文传递
Modeling of multiphase flow in low permeability porous media:Effect of wettability and pore structure properties
20
作者 Xiangjie Qin Yuxuan Xia +3 位作者 Juncheng Qiao Jiaheng Chen Jianhui Zeng Jianchao Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1127-1139,共13页
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef... Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery. 展开更多
关键词 Low permeability porous media Water-oil flow WETTABILITY pore structures Dual porosity pore network model(PNM) Free surface model
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部