期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries 被引量:1
1
作者 Wenjing Li Renhua Qian +7 位作者 Boxu Dong Zhou Xu Changyu Yan Menghan Yang Yuxuan Liu Xinrui Yan Jiantao Zai Xuefeng Qian 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2814-2820,共7页
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance... Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis. 展开更多
关键词 multicomponent sulfides electronic properties synergistic effect polysulfide/iodide redox flow batteries
在线阅读 下载PDF
Functionalization of two-dimensional vermiculite composite materials for improved adsorption and catalytic conversion reaction of soluble polysulfides in lithium-sulfur batteries 被引量:1
2
作者 Tiancheng Wang Zehao Shi +5 位作者 Furan Wang Weiya Li Guohong Kang Wei Liu Seung-Taek Myung Yongcheng Jin 《Journal of Energy Chemistry》 2025年第3期586-596,共11页
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin... In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1). 展开更多
关键词 VERMICULITE Li-S batteries Modified separators Electrical double layer Lithium polysulfides
在线阅读 下载PDF
MOF derived phosphorus doped cerium dioxide nanorods modified separator as efficient polysulfide barrier for advanced lithium-sulfur batteries
3
作者 Xinyun Liu Long Yuan +6 位作者 Xiaoli Peng Shilan Li Shengdong Jing Shengjun Lu Hua Lei Yufei Zhang Haosen Fan 《Chinese Chemical Letters》 2025年第10期563-569,共7页
Owing to the advantages of high energy density,low cost,abundant sulfur reserves and environmentally friendly nature,lithium-sulfur batteries(LSBs)were considered as one of the potential candidates of energy storage d... Owing to the advantages of high energy density,low cost,abundant sulfur reserves and environmentally friendly nature,lithium-sulfur batteries(LSBs)were considered as one of the potential candidates of energy storage devices for the next generation.However,the significant challenges in this area stem from the sluggish reaction kinetics of the insoluble Li_(2)S product and the capacity degradation triggered by the severe shuttle effect of polysulfides.It has been firmly established through numerous studies that modifying separators is an effective approach to enhance the properties of LSBs by facilitating the catalytic kinetic conversion and chemical adsorption of lithium polysulfides(Li PSs).In this work,we report a straightforward method for fabrication of the phosphorus doped porous CeO_(2)(P-CeO_(2))as separator modifier to accelerate the catalytic kinetic conversion of polysulfides and effectively inhibit the shuttle effect in LSBs.Through coin batteries tests,P-CeO_(2)modified PP separator(P-CeO_(2)//PP)exhibits remarkable electrochemical performance.It demonstrates a high initial capacity of 1180 mAh/g at 0.5 C,surpassing the performance of the bare CeO_(2)//PP separator.Furthermore,the P-CeO_(2)//PP separator demonstrates enhanced cycling stability,with a low-capacity fading rate of only 0.048%per cycle over 1000 cycles at 2 C.In compared with bare CeO_(2)//PP,P-CeO_(2)//PP exhibits high redox peak current,enhanced adsorption property of Li_(2)S_(6)and early Li_(2)S precipitation.These results highlight the superior performance of the P-CeO_(2)//PP separator compared to the bare CeO_(2)//PP separator.Hence,this research presents a successful strategy for the modification of LIBs separator with improved electrochemical performance and cycle stability. 展开更多
关键词 Li-S batteries P-doped CeO_(2) Separator modification polysulfide barrier Catalytic conversion
原文传递
Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries
4
作者 Qihou Li Jiamin Liu +6 位作者 Fulu Chu Jinwei Zhou Jieshuangyang Chen Zengqiang Guan Xiyun Yang Jie Lei Feixiang Wu 《Chinese Chemical Letters》 2025年第5期673-678,共6页
The intrinsic clustering behavior and kinetically sluggish conversion process of lithium polysulfides seriously limit the electrochemical reversibility of sulfur redox reactions in lithium-sulfur(Li-S)batteries.Here,w... The intrinsic clustering behavior and kinetically sluggish conversion process of lithium polysulfides seriously limit the electrochemical reversibility of sulfur redox reactions in lithium-sulfur(Li-S)batteries.Here,we introduce molybdenum pentachloride(MoCl_(5))into the electrolyte which could coordinate with lithium polysulfides and inhibit their intrinsic clustering behavior,subsequently serving as an improved mediator with the bi-functional catalytic effect for Li_(2)S deposition and activation.Moreover,the coordination bonding and accelerated conversion reaction can also greatly suppress the dissolution and shuttling of polysulfides.Consequently,such polysulfide complexes enable the Li-S coin cell to exhibit good longterm cycling stability with a capacity decay of 0.078%per cycle after 400 cycles at 2 C,and excellent rate performance with a discharge capacity of 589 mAh/g at 4 C.An area capacity of 3.94 mAh/cm^(2)is also achieved with a high sulfur loading of 4.5mg/cm^(2)at 0.2 C.Even at-20℃,the modified cell maintains standard discharge plateaus with low overpotential,delivering a high capacity of 741 mAh/g at 0.2 C after 80 cycles.The low-cost and convenient MoCl_(5)additive opens a new avenue for the effective regulation of polysulfides and significant enhancement in sulfur redox conversion. 展开更多
关键词 Lithium-sulfur(Li-S)battery polysulfide clustering Coordinating reaction Improved mediator Shuttle effect
原文传递
Intimate Heterostructured Electrocatalyst for Functional Tandem Catalysts of Lithium Polysulfides in Separator-Modified Lithium-Sulfur Batteries
5
作者 Chuyin Ma Shupeng Zhao +10 位作者 Hedong Chen Fangjun Lu Jiayi Wang Xuefei Weng Lichao Tan Lin Yang Mingliang Jin Xin Wang Kai Zong Dan Luo Zhongwei Chen 《Carbon Energy》 2025年第8期37-47,共11页
Developing electrocatalysts to inhibit polysulfide shuttling and expedite sulfur species conversion is vital for the evolution of Lithium-sulfur(Li-S)batteries.This work provides a facile strategy to design an intimat... Developing electrocatalysts to inhibit polysulfide shuttling and expedite sulfur species conversion is vital for the evolution of Lithium-sulfur(Li-S)batteries.This work provides a facile strategy to design an intimate heterostructure of MIL-88A@CdS as a sulfur electrocatalyst combining high sulfur adsorption and accelerated polysulfide conversion.The MIL-88A can give a region of high-ordered polysulfide adsorption,whereas the CdS is an effective nanoreactor for the sulfur reduction reaction(SRR).Notedly,the significant size difference between MIL-88A and CdS enables the unique heterostructure interactions.The largesize MIL-88A ensures a uniform distribution of CdS nanoparticles as a substrate.This configuration facilitates control of the initial polysulfide adsorption position relative to its final deposition site as lithium sulfide.The heterostructure also demonstrates rapid transport and efficient conversion of lithium polysulfides.Consequently,the Li-S battery with MIL-88A@CdS heterostructure modified separator delivers exceptional performance,achieving an areal capacity exceeding 6 mAh cm^(−2),an excellent rate capability of 980 mAh g^(−1) at 5 C,and notable cycling stability in a 2 Ah pouch cell over 100 cycles.This work is significant for elucidating the relationship between heterostructure and electrocatalytic performance,providing great insights for material design aimed at highly efficient future electrocatalysts in practical applications. 展开更多
关键词 ELECTROCATALYST HETEROINTERFACE lithium polysulfides lithium-sulfur battery SEPARATOR
在线阅读 下载PDF
Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries
6
作者 Tengfei Yang Jingshuai Xiao +2 位作者 Xiao Sun Yan Song Chaozheng He 《Chinese Chemical Letters》 2025年第3期494-499,共6页
Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-su... Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-sulfur batteries is seriously impeded by the sluggish multi-electron redox reaction of sulfur species and obstinate shuttle effect of polysulfides.In this study,a porous lanthanum oxychloride(LaOCl)nanofiber is designed as adsorbent and electrocatalyst of polysulfides to regulate the redox kinetics and suppress shuttling of sulfur species.Benefiting from the porous architecture and luxuriant active site of LaOCl nanofibers,the meliorative polarization effect and sulfur expansion can be accomplished.The LaOCl/S electrode exhibits an initial discharge specific capacity of 1112.3 mAh/g at 0.1 C and maintains a superior cycling performance with a slight decay of 0.02%per cycle over 1000 cycles at 1.0 C.Furthermore,even under a high sulfur loading of 4.6mg/cm^(2),the S cathode with LaOCl nanofibers still retains a high reversible areal capacity of 4.2 mAh/cm^(2)at 0.2 C and a stable cycling performance.Such a porous host expands the application of rare earth based catalysts in lithium-sulfur batteries and provides an alternative approach to facilitate the polysulfides conversion kinetics. 展开更多
关键词 Lithium-sulfur batteries polysulfideS Shuttle effect LaOCl nanofibers High sulfur loading
原文传递
Designing Amino Functionalized Titanium‑Organic Framework on Separators Toward Sieving and Redistribution of Polysulfides in Lithium‑Sulfur Batteries
7
作者 Xiaoya Kang Tianqi He +4 位作者 Hao Dang Xiangye Li Yumeng Wang Fuliang Zhu Fen Ran 《Nano-Micro Letters》 2025年第11期376-394,共19页
Shuttle effect of polysulfides overshadows the superiorities of lithium-sulfur batteries.Size-sieving effect could address this thorny trouble rely on size differ in polysulfides and lithium ions.However,clogged polys... Shuttle effect of polysulfides overshadows the superiorities of lithium-sulfur batteries.Size-sieving effect could address this thorny trouble rely on size differ in polysulfides and lithium ions.However,clogged polysulfides pose some challenges for cathode and are rarely recycled during charging/discharging.Herein,an amino functionalized titanium-organic framework is designed for modifying lithium-sulfur batteries separator to address the aforementioned challenges.Wherein,the introduction of amino narrows titanium-organic framework pore size,enabling functional separator to selectively modulate lithium ions and polysulfides migration using size-sieving effect,thereby completely suppressing polysulfides shuttle.Furthermore,the blocked polysulfides will be adsorbed on the separator surface by positively charged amino leveraging electrostatic adsorption,ensuring polysulfides to redistribute and reuse,and boosting active materials utilization.Significantly,the migration of lithium ions is not hindered since there are lithium ions transfer channels formed via Lewis acid-base interaction with the help of amino.Combined with these virtues,the lithium-sulfur batteries with amino functionalized titanium-organic framework modified separator enjoy an ultralow attenuation rate of 0.045%per cycle over 1000 cycles at 1.0C.Electrostatic adsorption and Lewis acid-base interaction cover deficiencies existing in the inhibition of polysulfides shuttle by size-sieving effect,providing fresh insight into the advancement of lithium-sulfur batteries. 展开更多
关键词 Size-sieving effect Functional separator MOF polysulfides shuttle Lithium-sulfur batteries
在线阅读 下载PDF
High-entropy sulfides enhancing adsorption and catalytic conversion of lithium polysulfides for lithium-sulfur batteries
8
作者 Yating Huang Jiajun Wang +5 位作者 Wei Zhao Lujun Huang Jinpeng Song Yajie Song Shaoshuai Liu Bo Lu 《Journal of Energy Chemistry》 2025年第3期263-270,共8页
Lithium-sulfur(Li-S)batteries with high energy density suffer from the soluble lithium polysulfide species,Traditional metal sulfides containing a single metal element used as electrocatalysts for Li-S batteries commo... Lithium-sulfur(Li-S)batteries with high energy density suffer from the soluble lithium polysulfide species,Traditional metal sulfides containing a single metal element used as electrocatalysts for Li-S batteries commonly have limited catalytic abilities to improve battery performance.Herein,based on the Hume-Rothery rule and solvothermal method,the high-entropy sulfide NiCoCuTiVS_(x)derived from Co_(9)S_(8)was designed and synthesized,to realize the combination of small local strain and excellent catalytic performance.With all five metal elements(Ni,Co,Cu,Ti,and V)capable of chemical interactions with soluble polysulfides,NiCoCuTiVS_(x)exhibited strong chemical confinement of polysulfides and promoted fast kinetics for polysulfides conversion.Consequently,the S/NiCoCuTiVS_(x)cathode can maintain a high discharge capacity of 968.9 mA h g^(-1)after 200 cycles at 0.5 C and its capacity retention is 1.3 times higher than that of S/Co_(9)S_(8).The improved cycle stability can be attributed to the synergistic effect originating from the multiple metal elements,coupled with the reduced nucleation and activation barriers of Li_(2)S.The present work opens a path to explore novel electrocatalyst materials based on high entropy materials for the achievement of advanced Li-S batteries. 展开更多
关键词 High-entropy sulfides Hume-Rothery rule polysulfides adsorption Cycle stability Lithium-sulfur batteries
在线阅读 下载PDF
Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides(Co-Mo-C)heterostructure for robust Li-S batteries
9
作者 Xuanyang Jin Xincheng Guo +6 位作者 Siyang Dong Shilan Li Shengdong Jin Peng Xia Shengjun Lu Yufei Zhang Haosen Fan 《Chinese Chemical Letters》 2025年第7期552-559,共8页
Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effe... Lithium-sulfur batteries(LSBs)are considered as the most promising energy storage technologies owing to their large theoretical energy density(2500Wh/kg)and specific capacity(1675 mAh/g).However,the heavy shuttle effect of polysulfides and the growth of lithium dendrites greatly hinder their further development and commercial application.In this paper,cobalt-molybdenum bimetallic carbides heterostructure(Co_(6)Mo_(6)C_(2)@Co@NC)was successfully prepared through chemical etching procedure of ZIF-67 precursor with sodium molybdate and the subsequent high temperature annealing process.The obtained dodecahedral Co_(6)Mo_(6)C_(2)@Co@NC with hollow and porous structure provides large specific surface area and plentiful active sites,which speeds up the chemisorption and catalytic conversion of polysulfides,thus mitigating the shuttle effect of polysulfides and the generation of lithium dendrites.When applied as the LSBs separator modifier layer,the cell with modified separator present excellent rate capability and durable cycling stability.In particular,the cell with Co_(6)Mo_(6)C_(2)@Co@NC/PP separator can maintain the high capacity of 738 mAh/g at the current density of 2 C and the specific capacity of 782.6 mAh/g after 300 cycles at 0.5 C,with the coulombic efficiency(CE)near to 100%.Moreover,the Co_(6)Mo_(6)C_(2)@Co@NC/PP battery exhibits the impressive capacity of 431 mAh/g in high sulfur loading(4.096 mg/cm^(2))at 0.5 C after 200 cycles.This work paves the way for the development of bimetallic carbides heterostructure multifunctional catalysts for durable Li-S battery applications and reveals the synergistic regulation of polysulfides and lithium dendrites through the optimization of the structure and composition. 展开更多
关键词 Synergistic regulation Co_(6)Mo_(6)C_(2)@Co@NC polysulfide catalytic conversion Shuttle effect Lithium dendrites inhibition
原文传递
Bi-MOF-derived BiPS_(4)/C armored with conductive Ni-HHTP:A dual MOF-mediated strategy for polysulfide suppression in sodium storage
10
作者 Ming Yue Wen Chen +3 位作者 Yanzhe Sheng Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 2025年第10期859-869,共11页
Metal phosphosulfides(MPS_(x)),especially BiPS_(4),have emerged as promising anode candidates for sodiumion batteries,distinguished by distinctive multinary redox chemistry,open tunnel-type structure,and high theoreti... Metal phosphosulfides(MPS_(x)),especially BiPS_(4),have emerged as promising anode candidates for sodiumion batteries,distinguished by distinctive multinary redox chemistry,open tunnel-type structure,and high theoretical capacity(>1000 m Ah g^(-1)).However,their practical implementation is fundamentally limited by polysulfide dissolution/shuttling and structural instability during prolonged cycling.Herein,we develop a groundbreaking two-stage metal-organic framework(MOF)-engineered compositing strategy through which Bi-MOF-derived BiPS_(4)/C pillars are robustly armored with conductive Ni-HHTP(HHTP=2,3,6,7,10,11-hexahydroxytriphenylene)nanorods.Density functional theory calculations reveal that this design achieves dual functionality:increased carrier density for enhanced charge transport dynamics and effective polysulfide adsorption to inhibit dissolution.The fabricated BiPS_(4)/C@Ni-HHTP composite delivers remarkable electrochemical properties,including high initial charge/discharge specific capacities of 1063.6/1181.3 mAh g^(-1)at 0.1 A g^(-1)and outstanding long-term stability with 99.2% capacity retention after 2000 cycles at 2 A g^(-1).Such superb performance stems from the perfect synergy of the inherent high-capacity redox behavior of BiPS_(4),the buffering effect of MOF-derived carbon,and the conductivity,adsorption sites and mechanical resilience of Ni-HHTP.This work establishes a new design paradigm for MPS_(x)materials,demonstrating how to simultaneously overcome conductivity limitations and shuttle effects in conversion-type electrodes. 展开更多
关键词 Metal phosphosulfides BiPS_(4) MOF engineering polysulfideS Sodium-ion batteries
在线阅读 下载PDF
Polyoxometalate/cobalt selenide functional separator for synergistic polysulfide anchoring and catalysis in lithium-sulfur batteries
11
作者 Tang-Suo Li Yi Liu +7 位作者 Xue-Cheng Zhang Lu-Nan Zhang Yu-Chao Wu Xin-Yuan Jiang Qiu-Ping Zhou Cheng Ma Lu-Bin Ni Guo-Wang Diao 《Journal of Energy Chemistry》 2025年第5期551-564,共14页
The polysulfides shuttle effect,sluggish sulfur redox kinetics and the corrosion of the Li anode have become important factors limiting the commercial application of lithium-sulfur batteries(LSBs).Herein,the polyoxome... The polysulfides shuttle effect,sluggish sulfur redox kinetics and the corrosion of the Li anode have become important factors limiting the commercial application of lithium-sulfur batteries(LSBs).Herein,the polyoxometalate(POM)nanoclusters with high catalytic activity and cobalt selenide with strong polarity are initially complemented to construct a PMo_(12)/CoSe_(2)@NC/CNTs multifunctional separator that can simultaneously solve the above problems.A series of experimental and theoretical results demonstrate that the Keggin-type POM,H_(3)PMo_(12)O_(40)nH_(2)O(PMo_(12))nanoclusters could function as catalytic centers for sulfur-involved transformations,with the CoSe_(2)nanoparticles serving as adsorption sites for soluble polysulfides.Accordingly,the assembled battery with the PMo_(12)/CoSe_(2)@NC/CNTs modified separator achieves an initial discharge capacity of 1263.79 mA h g^(-1),maintaining 635.77 mA h g^(-1),with a capacity decay rate of 0.06%per cycle after 500 cycles at 3C.This work provides a strategic approach for incorporating POM nanoclusters with polar periodic nanomaterials in LSB separators,contributing to the development of multifunctional separator materials,thus promoting the advancement of energy storage systems. 展开更多
关键词 POLYOXOMETALATE Cobalt selenide Multifunctional separator polysulfides adsorption and catalysis Lithium-sulfur batteries
在线阅读 下载PDF
Effective polysulfides regulation in high-performance Li–S batteries via novel VO_(2)–VS_(2)heterostructure
12
作者 Yao-Lin Hou Yu-Qing Zhang +4 位作者 Dan Li Hai-Ming Xie Jia Liu Yu-Long Liu Jie-Fang Zhu 《Rare Metals》 2025年第6期3772-3783,共12页
Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the f... Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions. 展开更多
关键词 Li-S battery Shuttle effect HETEROSTRUCTURES polysulfideS VO_(2)-VS_(2)
原文传递
An interfacial compatible Ti_(4)P_(8)S_(29) polysulfide cathode with open channels for high-rate solid-state polymer sodium batteries
13
作者 You-Tan Pan Xue Wang +5 位作者 Bai-Xin Peng Ke-Yan Hu Chong Zheng Yu-Qiang Fang Wu-Jie Dong Fu-Qiang Huang 《Rare Metals》 2025年第5期3008-3015,共8页
Solid-state polymer sodium batteries(SPSBs)are promising candidates for achieving higher energy density and safe energy storage.However,interface issues between oxide cathode and solid-state polymer electrolyte are a ... Solid-state polymer sodium batteries(SPSBs)are promising candidates for achieving higher energy density and safe energy storage.However,interface issues between oxide cathode and solid-state polymer electrolyte are a great challenge for their commercial application.In contrast,soft sulfur-based materials feature better interface contact and chemical compatibility.Herein,an interfacial compatible polysulfide Ti_(4)P_(8)S_(29) with robust Ti-S bonding and a highly active P-S unit is tailored as a high-performance cathode for SPSBs.The Ti_(4)P_(8)S_(29) cathode possesses a three-dimensional channel structure for offering ample Na+diffusion pathways.The assembled poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)-based SPSBs deliver a discharge capacity of 136 mAh·g^(-1)at 0.5C after 200 cycles.Furthermore,a discharge capacity of 88 mAh·g^(-1)is retained after 600 cycles at a high rate of 2C,surpassing many cathode materials in SPSBs.A dual-site redox of Ti^(4+)/Ti^(3+)and S^(-)/S^(2-)is verified by X-ray photoelectron spectroscopy(XPS)and cyclic voltammetry(CV)tests.Interestingly,a refined locally-ordered amorphous structure is unveiled by in situ and ex situ characterizations.The as-formed electrode structure with lots of open channels and isotropic properties are more beneficial for ion diffusion on the interface of electrode and solid-state polymer electrolytes(SPEs),leading to faster Na+diffusion kinetics.This work proposes a strategy of modulating open-channel to boost conversion kinetics in polysulfide cathode and opens a new pathway for designing high-performance SPSBs. 展开更多
关键词 Solid-state sodium batteries polysulfideS Ti4P8S29 Open-channel High-rate
原文传递
Coupling biphasic homojunction interface and oxygen vacancies for enhanced polysulfide capture and catalytic conversion in Li-S batteries
14
作者 Hao Wang Shidi Huang +2 位作者 Zhe Cui Jinqi Zhu Rujia Zou 《Journal of Energy Chemistry》 2025年第9期485-494,I0013,共11页
Lithium-sulfur(Li-S)batteries promise high energy density but suffer from low conductivity,polysulfide shuttling,and sluggish conversion kinetics.The construction of heterointerfaces is an effective strategy for enhan... Lithium-sulfur(Li-S)batteries promise high energy density but suffer from low conductivity,polysulfide shuttling,and sluggish conversion kinetics.The construction of heterointerfaces is an effective strategy for enhancing both polysulfide adsorption and conversion;however,the poor lattice compatibility in the heterointerface formed by different materials hinders interfacial charge transfer.In response to these challenges,herein,a biphasic homojunction of TiO_(2)enriched with oxygen vacancies and decorated with nitrogen-doped carbon nanotubes(B-TiO_(2-x)@NCNT)was designed to simultaneously enhance adsorption ability and catalytic activity.This homojunction interface composed of rutile(110)and anatase(101)plane exhibits excellent compatibility,and density functional theory(DFT)calculations reveal that this biphasic interface possesses a much higher binding energy to polysulfides compared to single-phase TiO_(2).Additionally,NCNTs are in situ grown on both interior and exterior surfaces of the hollow TiO_(2)nanospheres,facilitating rapid electron transfer for the encapsulated sulfur.The homojunction interface synergistically leverages the oxygen vacancies and highly conductive NCNTs to enhance the bidirectional catalytic activity for polysulfide conversion.Therefore,in this multifunctional sulfur-host,polysulfides are first strongly adsorbed at the homojunction interfaces and subsequently undergo smooth conversion,nucleation,and decomposition,completing a rapid sulfur redox cycle.The assembled Li-S battery delivered a high specific capacity of 1234.3 mAh g^(-1)at 0.2 C,long cycling stability for over 1000 cycles at 5 C with a low decay rate of 0.035%,and exciting areal capacity at a high sulfur loading of 5.6 mg cm^(-2)for 200cycles. 展开更多
关键词 Li-S batteries Biphasic homojunctions polysulfides adsorption and conversion TiO_(2)
在线阅读 下载PDF
Inhibition of cysteine protease papain by metal ions and polysulfide complexes,especially mercuric ion 被引量:3
15
作者 姜军 杨晓达 王夔 《Journal of Chinese Pharmaceutical Sciences》 CAS 2007年第1期1-8,共8页
Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis ... Aim Cysteine proteases are closely associated with many human and non-human pathological processes and are potential targets for metal ions especially Hg^2+ and the related species. In the present work, on the basis of to the general study on the effects of some metal ions on the activity of papain, a well-known representative of cysteine protease family, the inhibitory effects of Hg^2+ and polysulfide complexes were studied. Results All the metal ions tested (Hg^2+, Cu^2+, Ag^+, Au^3+, Zn^2+, Cd^2+, Fe^3+, Mn^2+, Pb^2+, Yb^3+) inhibit the activity of papain anda good correlation between the inhibitory potency and softness-and-hardness was observed. Among the metals, Hg^2+ was shown to be a potent inhibitor of papain with a Kiof 2 × 10^-7 mol·L^-1 among. Excessive amounts of glutathione and cysteine could reactivate the enzyme activity of papain deactivated by Hg^2+. These evidences supported that Hg^2+ might bind to the catalytic site of papain. Interestingly, Hg (Ⅱ) polysulfide complexes were for the first time found to inhibit papain with a Ki of 7 × 10^-6 mol·L^-1, whose potency is close to a well known mercury compound, thimerosal (Ki=2.7 × 10^-6). In addition, Hg (Ⅱ) polysulfide complexes exhibit good permeability ( 1.9 × 10-5 cm· s^-1) to caco-2 monolayer. Conclusion These results suggested that mercury polysulfide complexes might be potential bioactive species in the interaction with cysteine proteases and other- SH-content proteins, providing a new clue to understand the mechanism of the toxicological and pharmacological actions of cinnabar and other insoluble mercury compounds. 展开更多
关键词 Metal ion PAPAIN Cysteine protease MERCURY Metal polysulfide complex
暂未订购
Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances:A review 被引量:9
16
作者 Jingfa Li Zhihao Niu +2 位作者 Cong Guo Min Li Weizhai Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期434-451,共18页
Lithium-sulfur batteries(LSBs)are being recognized as potential successor to ubiquitous LIBs in daily life due to their higher theoretical energy density and lower cost effectiveness.However,the development of the LSB... Lithium-sulfur batteries(LSBs)are being recognized as potential successor to ubiquitous LIBs in daily life due to their higher theoretical energy density and lower cost effectiveness.However,the development of the LSB is beset with some tenacious issues,mainly including the insulation nature of the S or Li_(2)S(the discharged product),the unavoidable dissolution of the reaction intermediate products(mainly as lithium polysulfides(LiPSs)),and the subsequent LiPSs shuttling across the separator,resulting in the continuous loss of active material,anode passivation,and low coulombic efficiency.Containment methods by introducing the high-electrical conductivity host are commonly used in improving the electrochemical performances of LSBs.However,such prevalent technologies are in the price of reduced energy density since they require more addition of amount of host materials.Adding trace of catalysts that catalyze the redox reaction between S/Li_(2)S and Li_(2)Sn(3<n≤8),shows ingenious design,which not only accelerates the conversion reaction between the solid S species and dissolved S species,alleviating the shuttle effect,but also expedites the electron transport thus reducing the polarization of the electrode.In this review,the redox reaction process during Li-S chemistry are firstly highlighted.Recent developed catalysts,including transitionmetal oxides,chalcogenides,phosphides,nitrides,and carbides/borides are then outlined to better understand the role of catalyst additives during the polysulfide conversion.Finally,the critical issues,challenges,and perspectives are discussed to demonstrate the potential development of LSBs. 展开更多
关键词 CATALYST KINETICS Shuttle effect polysulfide conversion Lithium sulfur battery
在线阅读 下载PDF
Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries 被引量:10
17
作者 Pengbiao Geng Meng Du +4 位作者 Xiaotian Guo Huan Pang Ziqi Tian Pierre Braunstein Qiang Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期599-607,共9页
The practical application of Li-S batteries is largely impeded by the“shuttle effect”generated at the cathode which results in a short life cycle of the battery.To address this issue,this work discloses a bimetallic... The practical application of Li-S batteries is largely impeded by the“shuttle effect”generated at the cathode which results in a short life cycle of the battery.To address this issue,this work discloses a bimetallic metal-organic framework(MOF)as a sulfur host material based on Al-MOF,commonly called(Al)MIL-53.To obtain a high-adsorption capacity to lithium polysulfides(Li_(2)S_(x),4≤x≤8),we present an effective strategy to incorporate sulfiphilic metal ion(Cu^(2+))with high-binding energy to Li_(2)S_(x)into the framework.Through a one-step hydrothermal method,Cu^(2+)is homogeneously dispersed in Al-MOF,producing a bimetallic Al/Cu-MOF as advanced cathode material.The macroscopic Li2S4 solution permeation test indicates that the Al/Cu-MOF has better adsorption capacity to lithium polysulfides than monometallic Al-MOF.The sulfur-transfusing process is executed via a melt-diffusion method to obtain the sulfur-containing Al/CuMOF(Al/Cu-MOF-S).The assembled Li-S batteries with Al/Cu-MOF-S yield improved cyclic performance,much better than that of monometallic AlMOF as sulfur host.It is shown that chemical immobilization is an effective method for polysulfide adsorption than physical confinement and the bimetallic Al/Cu-MOF,formed by incorporation of sulfiphilic Cu^(2+)into porous MOF,will provide a novel and powerful approach for efficient sulfur host materials. 展开更多
关键词 lithium polysulfides lithium-sulfur batteries metal-organic frameworks shuttle effect sulfiphilic Cu^(2+)
在线阅读 下载PDF
The electrocatalytic activity of BaTiO3 nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries 被引量:4
18
作者 Hongcheng Gao Shunlian Ning +4 位作者 Jiasui Zou Shuang Men Yuan Zhou Xiujun Wang Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期208-216,I0007,共10页
The slow redox dynamics and dissolution of polysulfides in lithium-sulfur(Li-S)batteries result in poor rate performance and rapid decay of battery capacity,thus limiting their practical application.Ferroelectric bari... The slow redox dynamics and dissolution of polysulfides in lithium-sulfur(Li-S)batteries result in poor rate performance and rapid decay of battery capacity,thus limiting their practical application.Ferroelectric barium titanate(BT)nanoparticles have been reported to effectively improve the electrochemical performance of Li-S batteries due to the inherent self-polarization and high adsorption capacity of the BT nanoparticles towards polysulfides.Here in this paper,BT nanoparticles,behave as highly efficient electrocatalyst and demonstrate much higher redox dynamics towards the conversion reaction of polysulfides and Li2S than TiO2,as shown by both electrochemical measurements and density functional theory calculation.The coupling of the sulfur host of the hollow and graphitic carbon flakes(HGCF)and the BT nanoparticles(HGCF/S-BT)enable excellent electrochemical performance of Li-S batteries,delivering a0.047%capacity decay per cycle in 1000 cycles at 1 C,788 mAh g^-1 at 2 C and a reversible capacity of613 mAh g^-1 after 300 cycles at a current density of 0.5 C at a S loading of 3.4 mg cm^-2.HGCF/S-BT also shows great promise for practical application in flexible devices as demonstrated on the soft-packaged Li-S batteries. 展开更多
关键词 ELECTROCATALYSIS Redox reaction Li-S battery polysulfide DFT calculation
在线阅读 下载PDF
Promoted conversion of polysulfides by MoO_2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries 被引量:5
19
作者 Yawei Chen Shuzhang Niu +2 位作者 Wei Lv Chen Zhang Quanhong Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期521-524,共4页
As polar materials, transition-metal oxides have shown great potentials to improve the adsorption of lithium polysulfides in lithium-sulfur batteries. Herein, a MoO_2-ordered mesoporous carbon (M-OMC)hybrid was design... As polar materials, transition-metal oxides have shown great potentials to improve the adsorption of lithium polysulfides in lithium-sulfur batteries. Herein, a MoO_2-ordered mesoporous carbon (M-OMC)hybrid was designed as the sulfur host, in which MoO_2 is inlaid on the surface of ordered mesoporous carbons that can store active materials and provide fast electron transfer channel due to its ordered pore structure. The MoO_2 can effectively prevent the migration of polysulfides through the chemical adsorption and promote the conversion of polysulfides towards Li-sulfur battery. 展开更多
关键词 Lithium-sulfur BATTERIES Ordered MESOPOROUS carbon Electron transportation Chemical adsorption Catalytic effect polysulfideS SHUTTLING
原文传递
The effect of NiO-Ni_(3)N interfaces in in-situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries 被引量:5
20
作者 Jun Pu Zhenghua Wang +3 位作者 Pan Xue Kaiping Zhu Jiachen Li Yagang Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期762-770,共9页
Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engine... Inhibiting the “shuttle effect” of soluble polysulfides and improving reaction kinetics are the key factors necessary for further exploration of high-performance Li-S batteries. Herein, an effective interface engineering strategy is reported, wherein nitriding of an Ni-based precursor is controlled to enhance Li-S cell regulation. The resulting in-situ formed NiO-Ni_(3)N heterostructure interface not only has a stronger polysulfide adsorption effect than that of monomeric NiO or Ni_(3)N but also has a faster Li ion diffusion ability than a simple physical mixture. More importantly, this approach couples the respective advantages of NiO and Ni_(3)N to reduce polarization and facilitate electron transfer during polysulfide reactions and synergistically catalyze polysulfide conversion. In addition, ultrafine nanoparticles are thought to effectively improve the use of additive materials. In summary, Li-S batteries based on this NiO-Ni_(3)N heterostructure have the features of long cycle stability, rapid charging-discharging, and good performance under high sulfur loading. 展开更多
关键词 NiO-Ni_(3)N heterostructure Interface effect Ultrafine nanoparticles Li-S batteries polysulfides
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部