A number of chlorumethylated polystyrenes were synthesized and tried to immobilize aminoacylase from Aspergillus oryzae and many factors which affected immobilized enzyme activity were studied in detail. The results i...A number of chlorumethylated polystyrenes were synthesized and tried to immobilize aminoacylase from Aspergillus oryzae and many factors which affected immobilized enzyme activity were studied in detail. The results indicated that the immobilized enzyme on support(IAR-1) possessed high enzymatic activity and high stability.展开更多
A study has been conducted on the synthesis and characterization of a kind of novel polyrotaxanes comprisingα- cyclodextrins (α-CDs) threaded on triblock eopolymers with poly(ethylene glycol) (PEG) as a central axle...A study has been conducted on the synthesis and characterization of a kind of novel polyrotaxanes comprisingα- cyclodextrins (α-CDs) threaded on triblock eopolymers with poly(ethylene glycol) (PEG) as a central axle and flanked by two low molecular weight polystyrenes as outer stoppers.Styrene was allowed to telomerize with polypseudorotaxanes as chain transfer agents made from the self-assembly of a distal thiol-capped PEG with a varying amount ofα-CDs in the presence of a redox initiation system at 40~C i...展开更多
Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily ...Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily life,it still has a high utilization value.At the same time,the flammability of PS material determines that it cannot be applicated in places where fire accidents occur frequently.As a result,its application has been greatly limited.In order to realize the efficient utilization of waste PS and broaden its scope of application,PS was modified by hyper-crosslinking in order to improve its fire-retardant performance.In this method,the PS solution with high purity was obtained by dissolving waste PS foam with 1,2-dichloroethane(DCE),and then the hyper-crosslinked polymer with high specific surface area was prepared by adding cross-linking agent formaldehyde dimethyl acetal(FDA)and a Lewis-acid catalyst ferric chloride(FeCl_(3)).Further studies showed that the effects of the amount of cross-linking agent FDA,catalyst FeCl_(3) and PS on the reaction products were different.In addition,compared the as-prepared fire-retardant materials with PS foam from the aspects of flame retardancy and thermal insulation,it can be concluded that the fire-retardant performance of the materials prepared by this method has been significantly enhanced.And it is proved that this method is feasible towards the preparation of a large number of fire-retardant composite materials by using a scale-up experiment.展开更多
Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used si...Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos.In vivo validation experiments corroborated the transcriptomic findings,revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation,as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.Additionally,impaired heme synthesis further contributed to the diminished erythrocyte population.These findings underscore the toxic effects of polystyrene nanoparticles on hematopoietic processes,highlighting their potential to compromise organismal health in aquatic environments.展开更多
The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,...The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,As(Ⅴ)and Sb(Ⅴ),which are predominant compared with the trivalent species,As(Ⅲ)and Sb(Ⅲ),in surface waters.Here,we synthesized a novel composite adsorbent,amine-functionalized polystyrene resin loaded with nano TiO_(2)(Am PSd-Ti).The mm-scale spheres showed outstanding adsorption capacities for As(Ⅲ),As(Ⅴ),Sb(Ⅲ),and Sb(Ⅴ)at 73.85,153.29,86.80,and 123.71 mg/g,respectively.Am PSd-Ti exhibited selective adsorption for As and Sb in the presence of Cl^(-),NO_(3)^(-),SO_(4)^(2-),and F^(-).As and Sb were adsorbed by the nano-sized TiO_(2)confined in the porous resin via forming innersphere complexes.The protonated amine groups enhanced the adsorption of As(Ⅴ)and Sb(Ⅴ)by electrostatic attraction and hydrogen bonding,which was confirmed by experimental results and molecular dynamics simulations.Fixed-bed column tests showed breakthrough curves with adsorption capacities of1.38 mg/g(6600 BV)and 6.65 mg/g(1260 BV)upon treating real As-contaminated groundwater and Sbcontaminated industrial wastewater.Our study highlights a feasible strategy by incorporating inorganic metal oxides into organic polymers to achieve highly efficient removal of As and Sb in real-world scenarios.展开更多
Polystyrene(PS)waste was depolymerized using a low-temperature pyrolysis treatment(LTPT)to increase its caking index.The mechanism of caking index modification was revealed by using Fourier transform infrared spectros...Polystyrene(PS)waste was depolymerized using a low-temperature pyrolysis treatment(LTPT)to increase its caking index.The mechanism of caking index modification was revealed by using Fourier transform infrared spectroscopy,thermogravimetric(TG)analysis,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state^(13)C nuclear magnetic resonance spectroscopy.The crucible coal-blending coking tests were carried out using an industrial coal mixture and the treated-PS with the highest caking index(PS300)or raw PS.Some properties of the resultant cokes were also analyzed.It was demonstrated that the caking index of PS dramatically increased by LTPT;however,exceeding 300℃ did not yield any benefit.The caking index increased due to the formation of the caking components,whose molecules are medium in size,caused by LTPT.Additionally,the coke reactivity index of the coke obtained from the mixture containing PS300 decreased by 5.1%relative to that of the coke made from the mixture with PS and the coke strength after reaction index of the former increased by 7.3% compared with that of the latter,suggesting that the ratio of depolymerized PS used for coal-blending coking could increase relative to that of PS.展开更多
Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMM...Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields.展开更多
Microplastics(MPs)are one of the most concerning pollutants that affects the health and growth of aquatic organisms.We characterized the MPs dispersion in the milli-Q water and seawater,and evaluated the effects of MP...Microplastics(MPs)are one of the most concerning pollutants that affects the health and growth of aquatic organisms.We characterized the MPs dispersion in the milli-Q water and seawater,and evaluated the effects of MPs on the gut epithelial cells of brine shrimp using three sizes of polystyrene(PS)microbeads(0.05,0.5,and 5μm,respectively).Results show that microbeads evenly dispersed in milli-Q water,but exhibited aggregation tendency in seawater associating with the particle size.Apart from a reduced survival rate,we observed the structure changes in the gut epithelium that the smaller size of PS microbeads resulted in an increased reactive oxygen species(ROS)and higher apoptosis-related genes expression.Moreover,exposure to all size of PS microbeads led to increased green fluorescence of J-monomer,indicating the declined mitochondrial membrane potential.Therefore,exposure to PS microbeads led to significantly size-dependent toxicity on brine shrimp.Especially,0.05-μm PS microbeads were more toxic,leading to severe oxidative stress and activation of the p53-Bax-Bcl2 pathway,ultimately resulting in cellular apoptosis and gut damage.These findings are important to understand the mechanism of MPs toxicity and its potential ecological risks to marine aquatic animals.展开更多
Nanoplastics exhibit greater environmental biotoxicity than microplastics and can be ingested by humans through major routes such as tap water,bottled water and other drinking water.Nanoplastics present a challenge fo...Nanoplastics exhibit greater environmental biotoxicity than microplastics and can be ingested by humans through major routes such as tap water,bottled water and other drinking water.Nanoplastics present a challenge for air flotation due to their minute particle size,negative surface potential,and similar density to water.This study employed dodecyltrimethylammonium chloride(DTAC)as a modifier to improve conventional air flotation,which significantly enhanced the removal of polystyrene nanoplastics(PSNPs).Conventional air flotation removed only 3.09%of PSNPs,while air flotation modified by dodecyltrimethylammonium chloride(DTAC-modified air flotation)increased the removal of PSNPs to 98.05%.The analysis of the DTAC-modified air flotation mechanism was conducted using a combination of instruments,including a zeta potential analyzer,contact angle meter,laser particle size meter,high definition camera,scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and Fourier transform infrared spectrometer(FTIR).The results indicated that the incorporation of DTAC reversed the electrostatic repulsion between bubbles and PSNPs to electrostatic attraction,significantly enhancing the hydrophobic force in the system.This,in turn,improved the collision adhesion effect between bubbles and PSNPs.The experimental results indicated that even when the flotation time was reduced to 7min,the DTACmodified air flotation still achieved a high removal rate of 96.26%.Furthermore,changes in aeration,pH,and ionic strength did not significantly affect the performance of the modified air flotation for the removal of PSNPs.The removal rate of PSNPs in all three water bodies exceeded 95%.The DTAC-modified air flotation has excellent resistance to interference from complex conditions and shows great potential for practical application.展开更多
Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interfac...Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.展开更多
Microplastics(MPs)have garnered significant international scrutiny as an emerging environmental pollutant,constituting one of the four principal global environmental threats and posing potential health hazards to huma...Microplastics(MPs)have garnered significant international scrutiny as an emerging environmental pollutant,constituting one of the four principal global environmental threats and posing potential health hazards to humans.However,data on the impact of MPs on the early life of the commercially important fish remain limited.In this study,polystyrene microspheres(PS-MPs)(1 and 5μm)were used to investigate the effects of MPs on the growth,development,and metabolism in early life stages of large yellow croaker Pseudosciaena crocea.Results indicate that MPs were enriched in the gastrointestinal tract and gills of the fish.In addition,PS-MPs(1μm)exhibited no obvious effects on embryo hatching and heart rates,while increased the mortality rate(23.00%vs.control 14.99%)and decreased the body length(4098.61±447.03μm vs.control with 2827.04±254.75μm)of the larvae at the highest exposure concentration(5×10^(4)items/L).Metabolomics analysis revealed that PS-MPs(5μm)induced mild perturbations in phospholipid metabolism,specifically alterations in phosphatidylethanolamine(PE)levels.These changes influenced the cell membranes of juvenile fish,and consequently elicited inflammatory responses,disrupted lipid homeostasis,and affected other critical physiological processes.Ultimately,these effects may avoid the growth retardation and potential mortality.Therefore,PS-MPs could affect negatively the fish health in the early life stage,which has implications for aquatic ecosystems.展开更多
The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Z...The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Zophobas morio larvae are capable of consuming and breaking down EPS within their digestive tracts by minimizing the spread of microplastics. Studies of the consumption of EPS by Z. morio larvae are typically conducted under white or no visible light treatments. This study tested whether the color of visible light influenced the consumption rate of EPS by Z. morio larvae. If Z. morio larvae consume EPS under visible light, then visible light will influence the amount of EPS consumed. If results suggest that the consumption rate is influenced by visible light colors, then Z. morio larvae could be a solution for recycling EPS. This study’s procedure placed Z. morio larvae into 25 jars under one of six visible light treatments of red, yellow, green, blue, white, and no visible light. Each jar contained a pre-weighed block of EPS and six Z. morio larvae. After two weeks, the Z. morio larvae were removed from the jars, and the difference between each pre-weighed EPS block and the weight of the same partially consumed block was recorded in three trials. The data indicates that green and blue visible light treatments resulted in the greatest amount of EPS consumed by Z. morio larvae while the red and yellow had the least amount of EPS consumed by the Z. morio larvae. In conclusion, results indicate that green and blue visible light, compared to the no visible light treatment, could be used to influence the Z. morio larvae to consume more EPS. Green and blue visible light and Z. morio larvae could make the recycling process of EPS more environmentally friendly when used in households or by local environmental organizations.展开更多
The adsorption kinetics of polystyrene[1-butyl-3-methylimidazolium][bis(2,4,4-trimethylpentyl)phosphinate](PS[C_(4)mim][C272])towards V(V)in acidic leachate was explored under ultrasound.The effects of ultrasonic powe...The adsorption kinetics of polystyrene[1-butyl-3-methylimidazolium][bis(2,4,4-trimethylpentyl)phosphinate](PS[C_(4)mim][C272])towards V(V)in acidic leachate was explored under ultrasound.The effects of ultrasonic power and V(V)concentration on the adsorption performance of PS[C_(4)mim][C272]were investigated.The results showed that ultrasonic radiation significantly shortened the adsorption equilibrium time and improved the adsorption performance of PS[C_(4)mim][C272]compared with the conventional oscillation.At an ultrasonic power of 200 W,the equilibrium adsorption capacity of PS[C_(4)mim][C272]reached its maximum of 311.58 mg/g.The kinetic model fitting results showed that the adsorption process of PS[C_(4)mim][C272]strictly followed the pseudo-second-order kinetic model under ultrasound.Analysis using the shrinking core model and the Weber−Morris model showed that the adsorption process of PS[C_(4)mim][C272]was primarily controlled by intra-particle diffusion mechanism.The adsorption isotherm model study showed that the Langmuir isotherm model could effectively fit the adsorption process of PS[C_(4)mim][C272]under ultrasound.展开更多
To integrate insulation and load-bearing functions in prefabricated composite wall structures,a novel design based on fiber-reinforced expanded polystyrene(EPS)con-crete is proposed.The research focuses on three key a...To integrate insulation and load-bearing functions in prefabricated composite wall structures,a novel design based on fiber-reinforced expanded polystyrene(EPS)con-crete is proposed.The research focuses on three key as-pects:material properties,seismic performance,and ther-mal performance.Firstly,the compressive strength and thermal conductivity of fiber-reinforced EPS concrete were analyzed at different sand ratios,leading to the development of an optimal mix design and a damage constitutive model.Secondly,a combination of experimental and numerical analysis methods was used to investigate the seismic perfor-mance of prefabricated composite walls with different infill materials,including autoclaved aerated fly ash and fiber-reinforced EPS concrete.Finally,thermal perfor-mance studies were conducted on prefabricated composite wall panels with different infill materials.The results indi-cate that the specimens underwent elastic,elastoplastic,and failure stages during loading.While specimens using EPS concrete exhibited a slightly lower overall bearing capacity,they demonstrated superior ductility,energy dissipation ca-pacity,and enhanced insulation and thermal stability.展开更多
Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diam...Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diameter and shell thickness of the hollow SiO2 spheres increase with increasing the latex template diameter at a given mass ratio of SiO2 to latex template. The diameter and shell thickness of the hollow SiO2 spheres also increase with increasing the mass ratios of SiO2 to latex template. The presence of carboxylic acid groups on the surfaces of polystyrene-methyl acrylic acid latex templates favors the formation of dense and uniform SiO2 shells. The hollow SiO2 sphere is constructed by mesoporous shell with large specific surface area. When glyphosate is used as a release model chemical, glyphosate release rate is tuned by varying the shell thickness.展开更多
Different functional polystyrenes were synthesized and the adsorptions of microcystin-LR onto those resins were monitored by quartz crystal microbalance-dissipation. Both adsorption pH and surface properties had a con...Different functional polystyrenes were synthesized and the adsorptions of microcystin-LR onto those resins were monitored by quartz crystal microbalance-dissipation. Both adsorption pH and surface properties had a considerable effect on the adsorption amount, while adsorption temperature was less significant. Ammonium polystyrene would be a better candidate for microcystin-LR adsorption at neutral pH conditions.展开更多
Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage ca...Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.展开更多
The thermal decompositions of polystyrene (PS), poly(p-methyl styrene) (PMS), poly(p-bromo styrene) (PBrS), and poly(p-chloro styrene) (PClS) were investigated through thermogravimetric analysis (TGA). For this aim, F...The thermal decompositions of polystyrene (PS), poly(p-methyl styrene) (PMS), poly(p-bromo styrene) (PBrS), and poly(p-chloro styrene) (PClS) were investigated through thermogravimetric analysis (TGA). For this aim, Flynn-Wall-Ozawa method was applied to derivative thermogravimetric (DTG) curves. Continuous distribution kinetics was employed with a stoichiometric kernel to determine the rate coefficients for decomposition reactions. TGA data for the polymers were investigated by nonlinear fitting procedures that yielded activation energies and frequency factors for the combined chemical reactions. The reaction order values of PS derivatives are just about 1 in the nonisothermal decomposition process. Ea values for PS, PMS, and PClS increase with % conversion individually as they decrease in the order of PS/PMS/PClS which is consistent with the molecular weight increase. On the other hand, PBrS has the highest activation energy. Also its activation energy decreases with the % conversion. Thus it is suggested that PBrS degrades with somehow different mechanism.展开更多
Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packagin...Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 μg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 μg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.展开更多
Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite partic...Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite particles in-situ formed in an acidic water phase. With the evaporation of water and the oil phase(octane), the Pickering emulsion droplets agglomerated and combined with each other, forming a three-dimensional macroporous PS/GO composite matrix with excellent mechanical strength. The size of the macrospores ranged from 4 mm to 20 mm. The macroporous PS/GO composite monolith exhibited high adsorption capacity for tetracycline(TC) in an aqueous solution at p H 4–6. The maximum adsorption capacity reached 197.9 mg g 1at p H 6. The adsorption behaviour of TC fitted well with the Langmuir model and pseudo-second-order kinetic model. This work offers a simple and efficient approach to fabricate macroporous GO-based monolith with high strength and adsorption ability for organic pollutants.展开更多
文摘A number of chlorumethylated polystyrenes were synthesized and tried to immobilize aminoacylase from Aspergillus oryzae and many factors which affected immobilized enzyme activity were studied in detail. The results indicated that the immobilized enzyme on support(IAR-1) possessed high enzymatic activity and high stability.
基金supported by the National Natural Science Foundation of China (Nos.20374008 and 20674006).
文摘A study has been conducted on the synthesis and characterization of a kind of novel polyrotaxanes comprisingα- cyclodextrins (α-CDs) threaded on triblock eopolymers with poly(ethylene glycol) (PEG) as a central axle and flanked by two low molecular weight polystyrenes as outer stoppers.Styrene was allowed to telomerize with polypseudorotaxanes as chain transfer agents made from the self-assembly of a distal thiol-capped PEG with a varying amount ofα-CDs in the presence of a redox initiation system at 40~C i...
基金Thanks for financial support from the National Natural Science Foun-dation of China(No.51906252)the Natural Science Foundation of Jiangsu Province(NO.BK20190632)China Postdoctoral Science Foun-dation(2019M661980).
文摘Polystyrene(PS)is rich in plastic materials,but it produces a large amount of waste every year,causing a huge burden on the environment.Although PS plastic is the source of a common"white pollution"in daily life,it still has a high utilization value.At the same time,the flammability of PS material determines that it cannot be applicated in places where fire accidents occur frequently.As a result,its application has been greatly limited.In order to realize the efficient utilization of waste PS and broaden its scope of application,PS was modified by hyper-crosslinking in order to improve its fire-retardant performance.In this method,the PS solution with high purity was obtained by dissolving waste PS foam with 1,2-dichloroethane(DCE),and then the hyper-crosslinked polymer with high specific surface area was prepared by adding cross-linking agent formaldehyde dimethyl acetal(FDA)and a Lewis-acid catalyst ferric chloride(FeCl_(3)).Further studies showed that the effects of the amount of cross-linking agent FDA,catalyst FeCl_(3) and PS on the reaction products were different.In addition,compared the as-prepared fire-retardant materials with PS foam from the aspects of flame retardancy and thermal insulation,it can be concluded that the fire-retardant performance of the materials prepared by this method has been significantly enhanced.And it is proved that this method is feasible towards the preparation of a large number of fire-retardant composite materials by using a scale-up experiment.
基金supported by the Institute for Basic Science (IBS-R022-D1)Global Learning&Academic Research Institution for Master’s/Ph D students and Post-Doc Program of the National Research Foundation of Korea Grant funded by the Ministry of Education (RS-2023-00301938)+1 种基金National Research Foundation of Korea Grant funded by the Korean government (RS-2024-00406152,MSIT)Additional financial support was provided by the 2024 Post-Doc Development Program of Pusan National University,Korea Medical Institute,and KREONET。
文摘Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems,yet their impact on zebrafish(Danio rerio)embryonic development,particularly erythropoiesis,remains underexplored.This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos.In vivo validation experiments corroborated the transcriptomic findings,revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation,as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.Additionally,impaired heme synthesis further contributed to the diminished erythrocyte population.These findings underscore the toxic effects of polystyrene nanoparticles on hematopoietic processes,highlighting their potential to compromise organismal health in aquatic environments.
基金financial support of the National Natural Science Foundation of China(No.42230706)the Outstanding Youth Science Fund(Overseas)of Shandong Provincial Natural Science Foundation(No.2022HWYQ-015)+1 种基金the Taishan Scholars Project Special Fund(No.tsqn202211039)Qilu Youth Talent Program of Shandong University(No.61440082163171)。
文摘The removal of highly toxic arsenic(As)and antimony(Sb)contaminants in water by adsorption presents a great challenge worldwide.Conventional adsorbents exhibit insufficient efficacy for removing pentavalent oxyanions,As(Ⅴ)and Sb(Ⅴ),which are predominant compared with the trivalent species,As(Ⅲ)and Sb(Ⅲ),in surface waters.Here,we synthesized a novel composite adsorbent,amine-functionalized polystyrene resin loaded with nano TiO_(2)(Am PSd-Ti).The mm-scale spheres showed outstanding adsorption capacities for As(Ⅲ),As(Ⅴ),Sb(Ⅲ),and Sb(Ⅴ)at 73.85,153.29,86.80,and 123.71 mg/g,respectively.Am PSd-Ti exhibited selective adsorption for As and Sb in the presence of Cl^(-),NO_(3)^(-),SO_(4)^(2-),and F^(-).As and Sb were adsorbed by the nano-sized TiO_(2)confined in the porous resin via forming innersphere complexes.The protonated amine groups enhanced the adsorption of As(Ⅴ)and Sb(Ⅴ)by electrostatic attraction and hydrogen bonding,which was confirmed by experimental results and molecular dynamics simulations.Fixed-bed column tests showed breakthrough curves with adsorption capacities of1.38 mg/g(6600 BV)and 6.65 mg/g(1260 BV)upon treating real As-contaminated groundwater and Sbcontaminated industrial wastewater.Our study highlights a feasible strategy by incorporating inorganic metal oxides into organic polymers to achieve highly efficient removal of As and Sb in real-world scenarios.
基金supported by the National Natural Science Foundation of China(22308006 and 22278001)the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0407).
文摘Polystyrene(PS)waste was depolymerized using a low-temperature pyrolysis treatment(LTPT)to increase its caking index.The mechanism of caking index modification was revealed by using Fourier transform infrared spectroscopy,thermogravimetric(TG)analysis,pyrolysis-gas chromatography with mass spectrometric detection,and solid-state^(13)C nuclear magnetic resonance spectroscopy.The crucible coal-blending coking tests were carried out using an industrial coal mixture and the treated-PS with the highest caking index(PS300)or raw PS.Some properties of the resultant cokes were also analyzed.It was demonstrated that the caking index of PS dramatically increased by LTPT;however,exceeding 300℃ did not yield any benefit.The caking index increased due to the formation of the caking components,whose molecules are medium in size,caused by LTPT.Additionally,the coke reactivity index of the coke obtained from the mixture containing PS300 decreased by 5.1%relative to that of the coke made from the mixture with PS and the coke strength after reaction index of the former increased by 7.3% compared with that of the latter,suggesting that the ratio of depolymerized PS used for coal-blending coking could increase relative to that of PS.
基金supported by the National Natural Science Foundation of China(No.12027813)the fund of National Innovation Center of Radiation Application of China(Nos.KFZC2020020501,KFZC2021010101).
文摘Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields.
基金Supported by the Program of Sustainable Development and Protection of Artemia Resources in Yuncheng Salt Lake of China(No.YHYJ-2023005)。
文摘Microplastics(MPs)are one of the most concerning pollutants that affects the health and growth of aquatic organisms.We characterized the MPs dispersion in the milli-Q water and seawater,and evaluated the effects of MPs on the gut epithelial cells of brine shrimp using three sizes of polystyrene(PS)microbeads(0.05,0.5,and 5μm,respectively).Results show that microbeads evenly dispersed in milli-Q water,but exhibited aggregation tendency in seawater associating with the particle size.Apart from a reduced survival rate,we observed the structure changes in the gut epithelium that the smaller size of PS microbeads resulted in an increased reactive oxygen species(ROS)and higher apoptosis-related genes expression.Moreover,exposure to all size of PS microbeads led to increased green fluorescence of J-monomer,indicating the declined mitochondrial membrane potential.Therefore,exposure to PS microbeads led to significantly size-dependent toxicity on brine shrimp.Especially,0.05-μm PS microbeads were more toxic,leading to severe oxidative stress and activation of the p53-Bax-Bcl2 pathway,ultimately resulting in cellular apoptosis and gut damage.These findings are important to understand the mechanism of MPs toxicity and its potential ecological risks to marine aquatic animals.
基金supported by Science&Technology Department of Sichuan Province(No.2023YFS0389)Chengdu Technology Innovation Research and Development Project of Chengdu Science and Technology Bureau(No.2022-YF05-00307-SN).
文摘Nanoplastics exhibit greater environmental biotoxicity than microplastics and can be ingested by humans through major routes such as tap water,bottled water and other drinking water.Nanoplastics present a challenge for air flotation due to their minute particle size,negative surface potential,and similar density to water.This study employed dodecyltrimethylammonium chloride(DTAC)as a modifier to improve conventional air flotation,which significantly enhanced the removal of polystyrene nanoplastics(PSNPs).Conventional air flotation removed only 3.09%of PSNPs,while air flotation modified by dodecyltrimethylammonium chloride(DTAC-modified air flotation)increased the removal of PSNPs to 98.05%.The analysis of the DTAC-modified air flotation mechanism was conducted using a combination of instruments,including a zeta potential analyzer,contact angle meter,laser particle size meter,high definition camera,scanning electron microscope(SEM),energy dispersive spectrometer(EDS)and Fourier transform infrared spectrometer(FTIR).The results indicated that the incorporation of DTAC reversed the electrostatic repulsion between bubbles and PSNPs to electrostatic attraction,significantly enhancing the hydrophobic force in the system.This,in turn,improved the collision adhesion effect between bubbles and PSNPs.The experimental results indicated that even when the flotation time was reduced to 7min,the DTACmodified air flotation still achieved a high removal rate of 96.26%.Furthermore,changes in aeration,pH,and ionic strength did not significantly affect the performance of the modified air flotation for the removal of PSNPs.The removal rate of PSNPs in all three water bodies exceeded 95%.The DTAC-modified air flotation has excellent resistance to interference from complex conditions and shows great potential for practical application.
基金financially supported by the National Natural Science Foundation of China(Nos.22172028,21903015,and 22403017)Natural Science Foundation of Fujian Province of China(No.2022J05041)。
文摘Compatibilization is crucial for the blending of immiscible polymers to develop high-performance composites;however,traditional compatibilization by copolymers(pre-made or in-situ generation)suffers from weak interface anchoring,and inorganic particles have gained extensive attention recently owing to their large interfacial desorption energy,while their low affinity to bulk components is a drawback.In this study,an interfacial atom transfer radical polymerization(ATRP)technique was employed to grow polystyrene(PS)and poly(2-hydroxyethyl methacrylate)(PHEMA)simultaneously on different hemispheres of Br-functionalized SiO_(2) nanoparticles to stabilize a Pickering emulsion,whereby a brush-type Janus nanoparticle(SiO_(2)@JNP)was developed.The polymer brushes were well-characterized,and the Janus feature was validated by transmission electron microscope(TEM)observation of the sole hemisphere grafting of SiO_(2)-PS as a control sample.SiO_(2)@JNP was demonstrated to be an efficient compatibilizer for a PS/poly(methyl methacrylate)(PMMA)immiscible blend,and the droplet-matrix morphology was significantly refined.The mechanical strength and toughness of the blend were synchronously enhanced at a low content SiO_(2)@JNP optimized~0.9 wt%,with the tensile strength,elongation at break and impact strength increased by 17.7%,26.6%and 19.6%,respectively.This enhancement may be attributed to the entanglements between the grafted polymer brushes and individual components that improve the particle-bulk phase affinity and enforce interfacial adhesion.
基金Supported by the Pioneer and Leading Goose R&D Program of Zhejiang(No.2023C03130)the National Key R&D Program of China(No.2019YFD0901101)+4 种基金the National Natural Science Foundation of China(No.42076169)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Nos.SL2022ZD203,SL2022MS012)the Zhejiang Provincial Natural Science Founds for Distinguished Young Scientists(No.LR21D060001)the State Key Laboratory of Satellite Ocean Environment Dynamics(No.SOEDZZ1902)the ChinaAPEC Cooperation Fund(No.2029901)。
文摘Microplastics(MPs)have garnered significant international scrutiny as an emerging environmental pollutant,constituting one of the four principal global environmental threats and posing potential health hazards to humans.However,data on the impact of MPs on the early life of the commercially important fish remain limited.In this study,polystyrene microspheres(PS-MPs)(1 and 5μm)were used to investigate the effects of MPs on the growth,development,and metabolism in early life stages of large yellow croaker Pseudosciaena crocea.Results indicate that MPs were enriched in the gastrointestinal tract and gills of the fish.In addition,PS-MPs(1μm)exhibited no obvious effects on embryo hatching and heart rates,while increased the mortality rate(23.00%vs.control 14.99%)and decreased the body length(4098.61±447.03μm vs.control with 2827.04±254.75μm)of the larvae at the highest exposure concentration(5×10^(4)items/L).Metabolomics analysis revealed that PS-MPs(5μm)induced mild perturbations in phospholipid metabolism,specifically alterations in phosphatidylethanolamine(PE)levels.These changes influenced the cell membranes of juvenile fish,and consequently elicited inflammatory responses,disrupted lipid homeostasis,and affected other critical physiological processes.Ultimately,these effects may avoid the growth retardation and potential mortality.Therefore,PS-MPs could affect negatively the fish health in the early life stage,which has implications for aquatic ecosystems.
文摘The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Zophobas morio larvae are capable of consuming and breaking down EPS within their digestive tracts by minimizing the spread of microplastics. Studies of the consumption of EPS by Z. morio larvae are typically conducted under white or no visible light treatments. This study tested whether the color of visible light influenced the consumption rate of EPS by Z. morio larvae. If Z. morio larvae consume EPS under visible light, then visible light will influence the amount of EPS consumed. If results suggest that the consumption rate is influenced by visible light colors, then Z. morio larvae could be a solution for recycling EPS. This study’s procedure placed Z. morio larvae into 25 jars under one of six visible light treatments of red, yellow, green, blue, white, and no visible light. Each jar contained a pre-weighed block of EPS and six Z. morio larvae. After two weeks, the Z. morio larvae were removed from the jars, and the difference between each pre-weighed EPS block and the weight of the same partially consumed block was recorded in three trials. The data indicates that green and blue visible light treatments resulted in the greatest amount of EPS consumed by Z. morio larvae while the red and yellow had the least amount of EPS consumed by the Z. morio larvae. In conclusion, results indicate that green and blue visible light, compared to the no visible light treatment, could be used to influence the Z. morio larvae to consume more EPS. Green and blue visible light and Z. morio larvae could make the recycling process of EPS more environmentally friendly when used in households or by local environmental organizations.
基金financially supported by the National Natural Science Foundation of China(No.52074204)Key R&D Program of Zhejiang Province,China(No.2022C03061)。
文摘The adsorption kinetics of polystyrene[1-butyl-3-methylimidazolium][bis(2,4,4-trimethylpentyl)phosphinate](PS[C_(4)mim][C272])towards V(V)in acidic leachate was explored under ultrasound.The effects of ultrasonic power and V(V)concentration on the adsorption performance of PS[C_(4)mim][C272]were investigated.The results showed that ultrasonic radiation significantly shortened the adsorption equilibrium time and improved the adsorption performance of PS[C_(4)mim][C272]compared with the conventional oscillation.At an ultrasonic power of 200 W,the equilibrium adsorption capacity of PS[C_(4)mim][C272]reached its maximum of 311.58 mg/g.The kinetic model fitting results showed that the adsorption process of PS[C_(4)mim][C272]strictly followed the pseudo-second-order kinetic model under ultrasound.Analysis using the shrinking core model and the Weber−Morris model showed that the adsorption process of PS[C_(4)mim][C272]was primarily controlled by intra-particle diffusion mechanism.The adsorption isotherm model study showed that the Langmuir isotherm model could effectively fit the adsorption process of PS[C_(4)mim][C272]under ultrasound.
基金The National Natural Science Foundation of China (No. 52168022)。
文摘To integrate insulation and load-bearing functions in prefabricated composite wall structures,a novel design based on fiber-reinforced expanded polystyrene(EPS)con-crete is proposed.The research focuses on three key as-pects:material properties,seismic performance,and ther-mal performance.Firstly,the compressive strength and thermal conductivity of fiber-reinforced EPS concrete were analyzed at different sand ratios,leading to the development of an optimal mix design and a damage constitutive model.Secondly,a combination of experimental and numerical analysis methods was used to investigate the seismic perfor-mance of prefabricated composite walls with different infill materials,including autoclaved aerated fly ash and fiber-reinforced EPS concrete.Finally,thermal perfor-mance studies were conducted on prefabricated composite wall panels with different infill materials.The results indi-cate that the specimens underwent elastic,elastoplastic,and failure stages during loading.While specimens using EPS concrete exhibited a slightly lower overall bearing capacity,they demonstrated superior ductility,energy dissipation ca-pacity,and enhanced insulation and thermal stability.
基金Projects (11KJB530002, CX10B-259Z) supported by Research Funds from Jiangsu Provincial Department of Education, ChinaProject (10zxfk35) supported by Sichuan Province Nonmetallic Composites and Functional Materials Key Laboratory Project, China
文摘Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diameter and shell thickness of the hollow SiO2 spheres increase with increasing the latex template diameter at a given mass ratio of SiO2 to latex template. The diameter and shell thickness of the hollow SiO2 spheres also increase with increasing the mass ratios of SiO2 to latex template. The presence of carboxylic acid groups on the surfaces of polystyrene-methyl acrylic acid latex templates favors the formation of dense and uniform SiO2 shells. The hollow SiO2 sphere is constructed by mesoporous shell with large specific surface area. When glyphosate is used as a release model chemical, glyphosate release rate is tuned by varying the shell thickness.
基金This work was supported by the Foundation for scholar of Hefei Normal University (No.2014rcjj03), the Foundations of Educational Committee of Anhui Province (No.KJ2014A205), the National Natural Science Foundation of China (No.21101053, No.21101054, No.20934004, No.91127046, and No.20874094), the One Hundred Talent Project of Chinese Academy of Sciences, and the National Basic Research Program of China (No.2012CB821500 and No.2010CB934500).
文摘Different functional polystyrenes were synthesized and the adsorptions of microcystin-LR onto those resins were monitored by quartz crystal microbalance-dissipation. Both adsorption pH and surface properties had a considerable effect on the adsorption amount, while adsorption temperature was less significant. Ammonium polystyrene would be a better candidate for microcystin-LR adsorption at neutral pH conditions.
基金financially supported by the project of the National Natural Science Foundation of China (Grant Nos.51972270,52322203)the Key Research and Development Program of Shaanxi Province (Grant NO.2024GH-ZDXM-21)the Fundamental Research Funds for the Central Universities (Grant Nos.G2022KY0607,23GH0202277).
文摘Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.
文摘The thermal decompositions of polystyrene (PS), poly(p-methyl styrene) (PMS), poly(p-bromo styrene) (PBrS), and poly(p-chloro styrene) (PClS) were investigated through thermogravimetric analysis (TGA). For this aim, Flynn-Wall-Ozawa method was applied to derivative thermogravimetric (DTG) curves. Continuous distribution kinetics was employed with a stoichiometric kernel to determine the rate coefficients for decomposition reactions. TGA data for the polymers were investigated by nonlinear fitting procedures that yielded activation energies and frequency factors for the combined chemical reactions. The reaction order values of PS derivatives are just about 1 in the nonisothermal decomposition process. Ea values for PS, PMS, and PClS increase with % conversion individually as they decrease in the order of PS/PMS/PClS which is consistent with the molecular weight increase. On the other hand, PBrS has the highest activation energy. Also its activation energy decreases with the % conversion. Thus it is suggested that PBrS degrades with somehow different mechanism.
文摘Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 μg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 μg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.
基金supported by the National Natural Science Foundation of China (Nos. 51073146, 51103143, 51173175, 51473152, and 51573174)the Fundamental Research Funds for the Central Universities (Nos. WK2060200012 and WK3450000001)the Foundation of Anhui Key Laboratory of Tobacco Chemistry (China Tobacco Anhui Industrial Co., Ltd.) (No. 2014126)
文摘Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite particles in-situ formed in an acidic water phase. With the evaporation of water and the oil phase(octane), the Pickering emulsion droplets agglomerated and combined with each other, forming a three-dimensional macroporous PS/GO composite matrix with excellent mechanical strength. The size of the macrospores ranged from 4 mm to 20 mm. The macroporous PS/GO composite monolith exhibited high adsorption capacity for tetracycline(TC) in an aqueous solution at p H 4–6. The maximum adsorption capacity reached 197.9 mg g 1at p H 6. The adsorption behaviour of TC fitted well with the Langmuir model and pseudo-second-order kinetic model. This work offers a simple and efficient approach to fabricate macroporous GO-based monolith with high strength and adsorption ability for organic pollutants.