Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. ...In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.展开更多
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ...A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.展开更多
In this paper,the class of starlike functions of complex order γ(γ∈ℂ−{0})is extended from the case on unit disk U=(z∈C:|z|<1)to the case on the unit ball B in a complex Banach space or the unit polydisk U^(n) i...In this paper,the class of starlike functions of complex order γ(γ∈ℂ−{0})is extended from the case on unit disk U=(z∈C:|z|<1)to the case on the unit ball B in a complex Banach space or the unit polydisk U^(n) in C^(n).Let g be a convex function in U. We mainly establish the sharp bounds of all terms of homogeneous polynomial expansions for a subclass of g-parametric starlike mappings of complex order γ on B (resp.U^(n))when the mappings f are k-fold symmetric, k ∈ N. Our results partly solve the Bieberbach conjecture in several complex variables and generalize some prior works.展开更多
A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symb...A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.展开更多
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper...Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.展开更多
Based on compressive sensing and fractional discrete cosine transform(DCT)via polynomial interpolation(PI-FrDCT),an image encryption algorithm is proposed,in which the compression and encryption of an image are accomp...Based on compressive sensing and fractional discrete cosine transform(DCT)via polynomial interpolation(PI-FrDCT),an image encryption algorithm is proposed,in which the compression and encryption of an image are accomplished simultaneously.It can keep information secret more effectively with low data transmission.Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR(XOR)matrix,which greatly enlarge the key space of the encryption system.Unlike many other fractional transforms,the output of PI-FrDCT is real,which facilitates the storage,transmission and display of the encrypted image.Due to the introduction of a plain-image-dependent disturbance factor,the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image.Thus,the proposed encryption scheme is very sensitive to the plain-image,which makes the encryption system more secure.Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet ...Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.展开更多
In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the po...In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the possible factorization of the cyclotomic polynomial in polynomial factors which contain not higher than quadratic radicals in the coefficients whereas usually the factorization of the cyclotomic polynomials is considered in products of irreducible factors with integer coefficients. In considering the regular heptagon we find a modified variant of its construction by rhombic bicompasses and ruler. In detail, supported by figures, we investigate the case of the regular tridecagon (n=13) which in addition to n=7 is the only candidate with low n (the next to this is n=769 ) for which such a construction by rhombic bicompasses and ruler seems to be possible. Besides the coordinate origin we find here two points to fix for the possible application of two bicompasses (or even four with the addition of the complex conjugate points to be fixed). With only one bicompass one has in addition the problem of the trisection of an angle which can be solved by a neusis construction that, however, is not in the spirit of constructions by compass and ruler and is difficult to realize during the action of bicompasses. As discussed it seems that to finish the construction by bicompasses the correlated action of two rhombic bicompasses must be applied in this case which avoids the disadvantages of the neusis construction. Single rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points on one circle determines the positions of all the other points on the second circle in unique way. The known case n=17 embedded in our method is discussed in detail.展开更多
Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at ea...Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at each stage of MRI techniques. In this study, we present new sets of non-exponential generating functions representing the NMR transverse magnetizations and signals which are mathematically designed based on the theory and dynamics of the Bloch NMR flow equations. These signals are functions of many spinning nuclei of materials and can be used to obtain information observed in all flow systems. The Bloch NMR flow equations are solved using the Boubaker polynomial expansion scheme (BPES) and analytically connect most of the experimentally valuable NMR parameters in a simplified way for general analyses of magnetic resonance imaging with adiabatic condition.展开更多
Fins are extensively utilized in heat exchangers and various industrial applications as they are lightweight and can benefit in various systems,including electronic cooling devices and automotive components,owing to t...Fins are extensively utilized in heat exchangers and various industrial applications as they are lightweight and can benefit in various systems,including electronic cooling devices and automotive components,owing to their adaptable design.Furthermore,spine fins are introduced to improve performance in applications such as automotive radiators.They can be shaped in different ways and constructed from a collection of materials.Inspired by this,the present model examines the effects of internal heat generation and radiation-convection on the thermal distribution in a wetted convex-shaped spine fin.Using dimensionless terms,the proposed fin model involving a governing nonlinear ordinary differential equation(ODE)is transformed into a dimensionless form.The study uses the operational matrix with the Charlier polynomial collocation method(OMCCM)to ensure precise and computationally efficient numerical solutions for the dimensionless equation.In order to aid in the analysis of thermal performance,the importance of major parameters on the temperature profile is graphically illustrated.The main outcome of the study reveals that as the radiation-conductive,wet,and convective-conductive parameters increase,the heat transfer rate progressively improves.Conversely,the ambient temperature and internal heat generation parameters show an inverse relationship.展开更多
Economic losses and catastrophic casualties may occur once super high-rise structures are struck by low-probability but high-consequence scenarios of concurrent earthquakes and winds. Therefore, accurately predicting ...Economic losses and catastrophic casualties may occur once super high-rise structures are struck by low-probability but high-consequence scenarios of concurrent earthquakes and winds. Therefore, accurately predicting multi-hazard dynamic responses to super high-rise structures has significant engineering and scientific value. This study performed a parametric global sensitivity analysis (GSA) for multi-hazard dynamic response prediction of super high-rise structures using the multiple-degree-of-freedom shear (MFS) model. Polynomial chaos Kriging (PCK) was introduced to build a surrogate model that allowed GSA to be combined with Sobol’ indices. Monte Carlo simulation (MCS) is also conducted for the comparison to verify the accuracy and efficiency of the PCK method. Parametric sensitivity analysis is performed for a wide range of aleatory uncertainty (intensities of coupled multi-hazard), epistemic uncertainty (bending stiffness, k_(m);shear stiffness, kq;density, ρ;and damping ratio, ξ), probability distribution types, and coefficients of variation. The results indicate that epistemic uncertainty parameters, k_(m), ρ, and ξ dramatically affect the multi-hazard dynamic responses of super high-rise structures;in addition, Sobol’ indices between the normal and lognormal distributions are insignificant, while the variation levels have remarkably influenced the sensitivity indices.展开更多
The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first dis...The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.展开更多
This paper is devoted to proving the polynomial mixing for a weakly damped stochastic nonlinear Schröodinger equation with additive noise on a 1D bounded domain.The noise is white in time and smooth in space.We c...This paper is devoted to proving the polynomial mixing for a weakly damped stochastic nonlinear Schröodinger equation with additive noise on a 1D bounded domain.The noise is white in time and smooth in space.We consider both focusing and defocusing nonlinearities,with exponents of the nonlinearityσ∈[0,2)andσ∈[0,∞),and prove the polynomial mixing which implies the uniqueness of the invariant measure by using a coupling method.In the focusing case,our result generalizes the earlier results in[12],whereσ=1.展开更多
As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road ...As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road conditions,this paper proposes a linear motor active suspension with quasi-zero stiffness(QZS)air spring system.Firstly,a dynamic model of the linear motor active suspension with QZS air spring system is established.Secondly,considering the random uncertainties in the linear motor parameters due to manufacturing and environmental factors,a dynamic model and state equations incorporating these uncertainties are constructed using the polynomial chaos expansion(PCE)method.Then,based on H_(2) robust control theory and the Kalman filter,a state feedback control law is derived,accounting for the random parameter uncertainties.Finally,simulation and hardware-in-the-loop(HIL)experimental results demonstrate that the PCE-H_(2) robust controller not only provides better performance in terms of vehicle ride comfort compared to general H_(2) robust controller but also exhibits higher robustness to the effects of random uncertain parameters,resulting in more stable control performance.展开更多
Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three d...Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three distinct uniqueness results for a meromorphic function f associated with the differential-difference polynomial L_(η)^(n)f=Σ_(k=0)^(n)a_(k)f (z+k_(η))+a_(-1)f′.These results lead to a refined characterization of f (z)≡L_(η)^(n)f (z).Several illustrative examples are provided to demonstrate the sharpness and precision of the results obtained in this study.展开更多
Legendre polynomial method is well-known in modeling acoustic wave characteristics.This method uses for the mechanical displacements a single polynomial expansion over the entire sandwich layers.This results in a limi...Legendre polynomial method is well-known in modeling acoustic wave characteristics.This method uses for the mechanical displacements a single polynomial expansion over the entire sandwich layers.This results in a limitation in the accuracy of the field profile restitution.Thus,it can deal with the guided waves in layered sandwich only when the material properties of adjacent layers do not change significantly.Despite the great efforts regarding this issue in the literature,there remain open questions.One of them is:“what is the exact threshold of contrasting material properties of adjacent layers for which this polynomial method cannot correctly restitute the roots of guided waves?”We investigated this numerical issue using the calculated guided phase velocities in 0°/φ/0°-carbon fibre reinforced plastics(CFRP)sandwich plates with gradually increasing angleφ.Then,we approached this numerical problem by varying the middle layer thickness h90°for the 0°/90°/0°-CFRP sandwich structure,and we proposed an exact thickness threshold of the middle layer for the Legendre polynomial method limitations.We showed that the polynomial method fails to calculate the quasi-symmetric Lamb mode in 0°/φ/0°-CFRP whenφ>25°.Moreover,we introduced a new Lamb mode so-called minimum-group-velocity that has never been addressed in literature.展开更多
The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.The fractional derivative is described in the Caputo sen...The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.The fractional derivative is described in the Caputo sense.Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable.By solving the algebraic equations,the numerical solutions are acquired.The method in general is easy to implement and yields good results.Numerical examples are provided to demonstrate the validity and applicability of the method.展开更多
Approximation of finite population totals in the presence of auxiliary information is considered. A polynomial based on Lagrange polynomial is proposed. Like the local polynomial regression, Horvitz Thompson and ratio...Approximation of finite population totals in the presence of auxiliary information is considered. A polynomial based on Lagrange polynomial is proposed. Like the local polynomial regression, Horvitz Thompson and ratio estimators, this approximation technique is based on annual population total in order to fit in the best approximating polynomial within a given period of time (years) in this study. This proposed technique has shown to be unbiased under a linear polynomial. The use of real data indicated that the polynomial is efficient and can approximate properly even when the data is unevenly spaced.展开更多
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
文摘In analogy to the role of Lommel polynomials ?in relation to Bessel functions Jv(z) the theory of Associated Hermite polynomials in the scaled form ?with parmeter v to Parabolic Cylinder functions Dv(z) is developed. The group-theoretical background with the 3-parameter group of motions M(2) in the plane for Bessel functions and of the Heisenberg-Weyl group W(2) for Parabolic Cylinder functions is discussed and compared with formulae, in particular, for the lowering and raising operators and the eigenvalue equations. Recurrence relations for the Associated Hermite polynomials and for their derivative and the differential equation for them are derived in detail. Explicit expressions for the Associated Hermite polynomials with involved Jacobi polynomials at argument zero are given and by means of them the Parabolic Cylinder functions are represented by two such basic functions.
文摘A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.
基金supported by the National Natural Science Foundation of China(12061035)the Research Foundation of Jiangxi Science and Technology Normal University of China(2021QNBJRC003)supported by the Graduate Innovation Fund of Jiangxi Science and Technology Normal University(YC2024-X10).
文摘In this paper,the class of starlike functions of complex order γ(γ∈ℂ−{0})is extended from the case on unit disk U=(z∈C:|z|<1)to the case on the unit ball B in a complex Banach space or the unit polydisk U^(n) in C^(n).Let g be a convex function in U. We mainly establish the sharp bounds of all terms of homogeneous polynomial expansions for a subclass of g-parametric starlike mappings of complex order γ on B (resp.U^(n))when the mappings f are k-fold symmetric, k ∈ N. Our results partly solve the Bieberbach conjecture in several complex variables and generalize some prior works.
基金supported by the National Natural Science Foundation of China(Nos.U21A20447 and 61971079)。
文摘A novel suppression method of the phase noise is proposed to reduce the negative impacts of phase noise in coherent optical orthogonal frequency division multiplexing(CO-OFDM)systems.The method integrates the sub-symbol second-order polynomial interpolation(SSPI)with cubature Kalman filter(CKF)to improve the precision and effectiveness of the data processing through using a three-stage processing approach of phase noise.First of all,the phase noise values in OFDM symbols are calculated by using pilot symbols.Then,second-order Newton interpolation(SNI)is used in second-order interpolation to acquire precise noise estimation.Afterwards,every OFDM symbol is partitioned into several sub-symbols,and second-order polynomial interpolation(SPI)is utilized in the time domain to enhance suppression accuracy and time resolution.Ultimately,CKF is employed to suppress the residual phase noise.The simulation results show that this method significantly suppresses the impact of the phase noise on the system,and the error floors can be decreased at the condition of 16 quadrature amplitude modulation(16QAM)and 32QAM.The proposed method can greatly improve the CO-OFDM system's ability to tolerate the wider laser linewidth.This method,compared to the linear interpolation sub-symbol common phase error compensation(LI-SCPEC)and Lagrange interpolation and extended Kalman filter(LRI-EKF)algorithms,has superior suppression effect.
文摘Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.
基金supported by National Natural Science Foundation of China(Nos.61662047 and 61462061).
文摘Based on compressive sensing and fractional discrete cosine transform(DCT)via polynomial interpolation(PI-FrDCT),an image encryption algorithm is proposed,in which the compression and encryption of an image are accomplished simultaneously.It can keep information secret more effectively with low data transmission.Three-dimensional piecewise and nonlinear chaotic maps are employed to obtain a generating sequence and the exclusive OR(XOR)matrix,which greatly enlarge the key space of the encryption system.Unlike many other fractional transforms,the output of PI-FrDCT is real,which facilitates the storage,transmission and display of the encrypted image.Due to the introduction of a plain-image-dependent disturbance factor,the initial values and system parameters of the encryption scheme are determined by cipher keys and plain-image.Thus,the proposed encryption scheme is very sensitive to the plain-image,which makes the encryption system more secure.Experimental results demonstrate the validity and the reliability of the proposed encryption algorithm.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金the National Natural Science Foundation of China (Nos.11571238,11601332,91130014,11471312 and 91430216).
文摘Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.
文摘In this article we continue the consideration of geometrical constructions of regular n-gons for odd n by rhombic bicompasses and ruler used in [1] for the construction of the regular heptagon (n=7). We discuss the possible factorization of the cyclotomic polynomial in polynomial factors which contain not higher than quadratic radicals in the coefficients whereas usually the factorization of the cyclotomic polynomials is considered in products of irreducible factors with integer coefficients. In considering the regular heptagon we find a modified variant of its construction by rhombic bicompasses and ruler. In detail, supported by figures, we investigate the case of the regular tridecagon (n=13) which in addition to n=7 is the only candidate with low n (the next to this is n=769 ) for which such a construction by rhombic bicompasses and ruler seems to be possible. Besides the coordinate origin we find here two points to fix for the possible application of two bicompasses (or even four with the addition of the complex conjugate points to be fixed). With only one bicompass one has in addition the problem of the trisection of an angle which can be solved by a neusis construction that, however, is not in the spirit of constructions by compass and ruler and is difficult to realize during the action of bicompasses. As discussed it seems that to finish the construction by bicompasses the correlated action of two rhombic bicompasses must be applied in this case which avoids the disadvantages of the neusis construction. Single rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points on one circle determines the positions of all the other points on the second circle in unique way. The known case n=17 embedded in our method is discussed in detail.
文摘Computational techniques are invaluable to the continued success and development of Magnetic Resonance Imaging (MRI) and to its widespread applications. New processing methods are essential for addressing issues at each stage of MRI techniques. In this study, we present new sets of non-exponential generating functions representing the NMR transverse magnetizations and signals which are mathematically designed based on the theory and dynamics of the Bloch NMR flow equations. These signals are functions of many spinning nuclei of materials and can be used to obtain information observed in all flow systems. The Bloch NMR flow equations are solved using the Boubaker polynomial expansion scheme (BPES) and analytically connect most of the experimentally valuable NMR parameters in a simplified way for general analyses of magnetic resonance imaging with adiabatic condition.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/308/46。
文摘Fins are extensively utilized in heat exchangers and various industrial applications as they are lightweight and can benefit in various systems,including electronic cooling devices and automotive components,owing to their adaptable design.Furthermore,spine fins are introduced to improve performance in applications such as automotive radiators.They can be shaped in different ways and constructed from a collection of materials.Inspired by this,the present model examines the effects of internal heat generation and radiation-convection on the thermal distribution in a wetted convex-shaped spine fin.Using dimensionless terms,the proposed fin model involving a governing nonlinear ordinary differential equation(ODE)is transformed into a dimensionless form.The study uses the operational matrix with the Charlier polynomial collocation method(OMCCM)to ensure precise and computationally efficient numerical solutions for the dimensionless equation.In order to aid in the analysis of thermal performance,the importance of major parameters on the temperature profile is graphically illustrated.The main outcome of the study reveals that as the radiation-conductive,wet,and convective-conductive parameters increase,the heat transfer rate progressively improves.Conversely,the ambient temperature and internal heat generation parameters show an inverse relationship.
基金Dalian Municipal Natural Science Foundation under Grant No.2019RD01。
文摘Economic losses and catastrophic casualties may occur once super high-rise structures are struck by low-probability but high-consequence scenarios of concurrent earthquakes and winds. Therefore, accurately predicting multi-hazard dynamic responses to super high-rise structures has significant engineering and scientific value. This study performed a parametric global sensitivity analysis (GSA) for multi-hazard dynamic response prediction of super high-rise structures using the multiple-degree-of-freedom shear (MFS) model. Polynomial chaos Kriging (PCK) was introduced to build a surrogate model that allowed GSA to be combined with Sobol’ indices. Monte Carlo simulation (MCS) is also conducted for the comparison to verify the accuracy and efficiency of the PCK method. Parametric sensitivity analysis is performed for a wide range of aleatory uncertainty (intensities of coupled multi-hazard), epistemic uncertainty (bending stiffness, k_(m);shear stiffness, kq;density, ρ;and damping ratio, ξ), probability distribution types, and coefficients of variation. The results indicate that epistemic uncertainty parameters, k_(m), ρ, and ξ dramatically affect the multi-hazard dynamic responses of super high-rise structures;in addition, Sobol’ indices between the normal and lognormal distributions are insignificant, while the variation levels have remarkably influenced the sensitivity indices.
基金Supported by the National Natural Science Foundation of China(12271154)the Natural Science Foundation of Hunan Province(2022JJ30234)the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20231032)。
文摘The zero coprime system equivalence is one of important research in the theory of multidimensional system equivalence,and is closely related to zero coprime equivalence of multivariate polynomial matrices.We first discuss the relation between zero coprime equivalence and unimodular equivalence for polynomial matrices.Then,we investigate the zero coprime equivalence problem for several classes of polynomial matrices,some novel findings and criteria on reducing these matrices to their Smith normal forms are obtained.Finally,an example is provided to illustrate the main results.
基金supported by the National Key R&D Program of China(2023YFA1009200)the NSFC(11925102)the Liaoning Revitalization Talents Program(XLYC2202042)。
文摘This paper is devoted to proving the polynomial mixing for a weakly damped stochastic nonlinear Schröodinger equation with additive noise on a 1D bounded domain.The noise is white in time and smooth in space.We consider both focusing and defocusing nonlinearities,with exponents of the nonlinearityσ∈[0,2)andσ∈[0,∞),and prove the polynomial mixing which implies the uniqueness of the invariant measure by using a coupling method.In the focusing case,our result generalizes the earlier results in[12],whereσ=1.
基金Supported by National Natural Science Foundation of China(Grant No.51875256)Open Platform Fund of Human Institute of Technology(Grant No.KFA22009).
文摘As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road conditions,this paper proposes a linear motor active suspension with quasi-zero stiffness(QZS)air spring system.Firstly,a dynamic model of the linear motor active suspension with QZS air spring system is established.Secondly,considering the random uncertainties in the linear motor parameters due to manufacturing and environmental factors,a dynamic model and state equations incorporating these uncertainties are constructed using the polynomial chaos expansion(PCE)method.Then,based on H_(2) robust control theory and the Kalman filter,a state feedback control law is derived,accounting for the random parameter uncertainties.Finally,simulation and hardware-in-the-loop(HIL)experimental results demonstrate that the PCE-H_(2) robust controller not only provides better performance in terms of vehicle ride comfort compared to general H_(2) robust controller but also exhibits higher robustness to the effects of random uncertain parameters,resulting in more stable control performance.
基金Supported by the National Natural Science Foundation of China (Grant No.12161074)the Talent Introduction Research Foundation of Suqian University (Grant No.106-CK00042/028)+1 种基金Suqian Sci&Tech Program (Grant No.M202206)Sponsored by Qing Lan Project of Jiangsu Province and Suqian Talent Xiongying Plan of Suqian。
文摘Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three distinct uniqueness results for a meromorphic function f associated with the differential-difference polynomial L_(η)^(n)f=Σ_(k=0)^(n)a_(k)f (z+k_(η))+a_(-1)f′.These results lead to a refined characterization of f (z)≡L_(η)^(n)f (z).Several illustrative examples are provided to demonstrate the sharpness and precision of the results obtained in this study.
基金supported by the National Natural Science Foundation of China(Grant No.12102131).
文摘Legendre polynomial method is well-known in modeling acoustic wave characteristics.This method uses for the mechanical displacements a single polynomial expansion over the entire sandwich layers.This results in a limitation in the accuracy of the field profile restitution.Thus,it can deal with the guided waves in layered sandwich only when the material properties of adjacent layers do not change significantly.Despite the great efforts regarding this issue in the literature,there remain open questions.One of them is:“what is the exact threshold of contrasting material properties of adjacent layers for which this polynomial method cannot correctly restitute the roots of guided waves?”We investigated this numerical issue using the calculated guided phase velocities in 0°/φ/0°-carbon fibre reinforced plastics(CFRP)sandwich plates with gradually increasing angleφ.Then,we approached this numerical problem by varying the middle layer thickness h90°for the 0°/90°/0°-CFRP sandwich structure,and we proposed an exact thickness threshold of the middle layer for the Legendre polynomial method limitations.We showed that the polynomial method fails to calculate the quasi-symmetric Lamb mode in 0°/φ/0°-CFRP whenφ>25°.Moreover,we introduced a new Lamb mode so-called minimum-group-velocity that has never been addressed in literature.
文摘The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials.The fractional derivative is described in the Caputo sense.Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable.By solving the algebraic equations,the numerical solutions are acquired.The method in general is easy to implement and yields good results.Numerical examples are provided to demonstrate the validity and applicability of the method.
文摘Approximation of finite population totals in the presence of auxiliary information is considered. A polynomial based on Lagrange polynomial is proposed. Like the local polynomial regression, Horvitz Thompson and ratio estimators, this approximation technique is based on annual population total in order to fit in the best approximating polynomial within a given period of time (years) in this study. This proposed technique has shown to be unbiased under a linear polynomial. The use of real data indicated that the polynomial is efficient and can approximate properly even when the data is unevenly spaced.