Let g be a finite dimensional complex simple Lie algebra with Cartan subalgebraη.Then C[η]has a g-module structure if and only if g is of type A or of type C;this is called the polynomial module of rank one,In the q...Let g be a finite dimensional complex simple Lie algebra with Cartan subalgebraη.Then C[η]has a g-module structure if and only if g is of type A or of type C;this is called the polynomial module of rank one,In the quantum version,the rank one polynomial modules over U_(q)(sl_(2))have been classified.In this paper,we prove that the quantum group U_(q)(sl_(3))has no rank one polynomial module.展开更多
A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we...A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.展开更多
This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows th...This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows that if η : P ?→ M is an ?- cover of M, then [ηS, ] : [PS, ] ?→ [MS, ] is an [?S, ]-cover of left [[RS, ]]-module ≤ ≤ ≤ ≤ ≤ [MS, ], where ? is a class of left R-modules and [MS, ] is the left [[RS, ]]-module of ≤ ≤ ≤ generalized inverse polynomials over a left R-module M. Also some properties of the injective cover of left [[RS, ]]-module [MS, ] are discussed. ≤展开更多
基金support from the NNSF(Nos.11971440,11871249,11771142,11931009,11871326).
文摘Let g be a finite dimensional complex simple Lie algebra with Cartan subalgebraη.Then C[η]has a g-module structure if and only if g is of type A or of type C;this is called the polynomial module of rank one,In the quantum version,the rank one polynomial modules over U_(q)(sl_(2))have been classified.In this paper,we prove that the quantum group U_(q)(sl_(3))has no rank one polynomial module.
基金The NNSF (10571026) of Chinathe Specialized Research Fund (20060286006) for the Doctoral Program of Higher Education.
文摘A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.
基金the National Natural Science Foundation of China (No.10171082) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education of China and NWNU-KJCXGC212.
文摘This paper is motivated by S. Park [10] in which the injective cover of left R[x]- module M[x? ] of inverse polynomials over a left R-module M was discussed. The 1 author considers the ?-covers of modules and shows that if η : P ?→ M is an ?- cover of M, then [ηS, ] : [PS, ] ?→ [MS, ] is an [?S, ]-cover of left [[RS, ]]-module ≤ ≤ ≤ ≤ ≤ [MS, ], where ? is a class of left R-modules and [MS, ] is the left [[RS, ]]-module of ≤ ≤ ≤ generalized inverse polynomials over a left R-module M. Also some properties of the injective cover of left [[RS, ]]-module [MS, ] are discussed. ≤