BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil...Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.展开更多
BACKGROUND Fluoropyrimidines are metabolized in the liver by the enzyme dihydropyrimidine dehydrogenase(DPD),encoded by the DPYD gene.About 7%of the European population is a carrier of DPYD gene polymorphisms associat...BACKGROUND Fluoropyrimidines are metabolized in the liver by the enzyme dihydropyrimidine dehydrogenase(DPD),encoded by the DPYD gene.About 7%of the European population is a carrier of DPYD gene polymorphisms associated with reduced DPD enzyme activity.AIM To assess the prevalence of DPYD polymorphisms and their impact on fluoropyrimidine tolerability in Italian patients with gastrointestinal malignancies.METHODS A total of 300 consecutive patients with a diagnosis of gastrointestinal malignancy and treated with a fluoropyrimidine-based regimen were included in the analysis and divided into two cohorts:(1)149 patients who started fluoropyrimidines after DPYD testing;and(2)151 patients treated without DPYD testing.Among the patients in cohort A,15%tested only the DPYD2A polymorphism,19%tested four polymorphisms(DPYD2A,HapB3,c.2846A>T,and DPYD13),and 66%tested five polymorphisms including DPYD6.RESULTS Overall,14.8%of patients were found to be carriers of a DPYD variant,the most common being DPYD6(12.1%).Patients in cohort A reported≥G3 toxicities(P=0.00098),particularly fewer nonhematological toxicities(P=0.0028)compared with cohort B,whereas there was no statistically significant difference between the two cohorts in hematological toxicities(P=0.6944).Significantly fewer chemotherapy dose reductions(P=0.00002)were observed in cohort A compared to cohort B,whereas there was no statistically significant differences in chemotherapy delay.CONCLUSION Although this study had a limited sample size,it provides additional information on the prevalence of DPYD polymorphisms in the Italian population and highlights the role of pharmacogenetic testing to prevent severe toxicity.展开更多
In our work,polymorphism strategy has been successfully applied to tune up chromism and luminescence properties of viologen-based materials.Two polymorphs of viologen-based complexes ofα-CdBr_(2)(PHSQ)_(2)(H_(2)O)_(2...In our work,polymorphism strategy has been successfully applied to tune up chromism and luminescence properties of viologen-based materials.Two polymorphs of viologen-based complexes ofα-CdBr_(2)(PHSQ)_(2)(H_(2)O)_(2)(1)andβ-CdBr_(2)(PHSQ)_(2)(H_(2)O)_(2)(2)(PHSQ=N-(4-sulfophenyl)-4,4-bipyridinium)were synthesized by changing the solvent.They can both respond to UV light and electricity in the manner of chromism visible to the naked eye and the coloration states have good reversibility,through which an inkless erasable printing model has been established.But the coloration contrast of 1 is higher compared to 2.Meanwhile,they both exhibit photoluminescence properties and the intensity of 1 is twice that of 2,which is accompanied by photoquenching upon continuous UV light irradiation.The only divergence of disordered/ordered O atoms in the two crystalline compounds leads to significantly different chromic and luminescent properties.Further explorations simultaneously demonstrate that the different chromic performance between 1 and 2 should attribute to the alteration of stimulus-induced(light/electricity)electron transfer channels caused by the ordered/disordered O atoms in the complexes,which is achieved through C-H···O and O-H···O interactions to change crystal arrangement and structural rigidity,thus affect luminescent properties.展开更多
Methylenetetrahydrofolate reductase(MTHFR)is a key enzyme in folate metabolism.Its genetic polymorphisms affect the metabolism of methyl donors,including folate and betaine,and are consequently associated with the dev...Methylenetetrahydrofolate reductase(MTHFR)is a key enzyme in folate metabolism.Its genetic polymorphisms affect the metabolism of methyl donors,including folate and betaine,and are consequently associated with the development of various chronic diseases such as stroke and neoplasms.Methods This umbrella review,covering the period from 2006 to 2025,searched PubMed,Embase,Web of Science,Medline,CNKI,WanFang,and Cochrane Library databases for published systematic reviews and meta-analyses of polymorphisms relating to the MTHFR C677T and A1298C gene polymorphisms and various chronic diseases.Subsequently,this study assessed methodological quality with AMSTAR-2,while the strength of evidence for each outcome was graded according to the GRADE and the credibility evaluation.This umbrella review included 39 studies related to 8 diseases classified according to the ICD-10 classification.Results Overall,C677T exhibited a positive correlation with depression(allele:OR=1.18,95%CI:1.13-1.24;dominant:OR=1.16,95%CI:1.09-1.23;recessive:OR=1.42,95%CI:1.30-1.56;homozygote:OR=1.48,95%CI:1.34-1.63),and polycystic ovary syndrome(allele:OR=1.35,95%CI:1.24-1.46;dominant:OR=1.46,95%CI:1.30-1.64;recessive:OR=1.39,95%CI:1.19-1.62;homozygote:OR=1.63,95%CI:1.38-1.93),and exhibited a negative correlation with oral cancer(allele:OR=0.24,95%CI:0.22-0.26;dominant:OR=0.14,95%CI:0.12-0.16;recessive:OR=0.31,95%CI:0.28-0.35;homozygote:OR=0.14,95%CI:0.12-0.16).A1298C was positively associated with polycystic ovary syndrome in four models(allele:OR=1.93,95%CI:1.67-2.21;dominant:OR=1.93,95%CI:1.64-2.27;recessive:OR=3.72,95%CI:2.47-5.61;homozygote:OR=4.38,95%CI:2.90-6.62).Conclusion The MTHFR C677T and A1298C gene polymorphisms demonstrated significant associations with non-communicable diseases,thereby contributing to the advancement of precision medicine.展开更多
BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus(GDM),and the correlation between genetic factors related to folic acid metabolism pathways and...BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus(GDM),and the correlation between genetic factors related to folic acid metabolism pathways and GDM remains to be revealed.AIM To examine the association between single-nucleotide polymorphisms(SNPs)of enzyme genes in the folate metabolite pathway as well as that between GDM-related genes and risk for GDM.METHODS A nested case-control study was conducted with GDM cases(n=412)and healthy controls(n=412).DNA was extracted blood samples and SNPs were genotyped using Agena Bioscience’s MassARRAY gene mass spectrometry system.The associations between different SNPs of genes and the risk for GDM were estimated using logistic regression models.The generalized multi-factor dimensionality reduction(GMDR)method was used to analyze gene-gene and gene-environment interactions using the GMDR 0.9 software.RESULTS The variation allele frequency of melatonin receptor 1B(MTNR1B)rs10830963 was higher in the GDM group than in controls(P<0.05).MTNR1B rs10830963 mutant G was associated with risk for GDM[adjusted odds ratio(aOR):1.43;95%confidence interval(95%CI):1.13-1.80]in the additive model.MTNR1B rs10830963 GG+GC was significantly associated with the risk for GDM(aOR:1.65;95%CI:1.23-2.22)in the dominant model.The two-locus model of MTNR1B rs10830963 and CHEMERIN rs4721 was the best model(P<0.05)for gene-gene interactions in the GMDR results.The high-risk rs10830963×rs4721 type of interaction was a risk factor for GDM(aOR:2.09;95%CI:1.49-2.93).CONCLUSION This study does not find an association between SNPs of folate metabolic enzymes and risk for GDM.The G mutant allele of MTNR1B rs10830963 is identified as a risk factor for GDM in the additive model,and there may be gene-gene interactions between MTNR1B rs10830963 and CHEMERIN rs4721.It is conducive to studying the causes of GDM and provides a new perspective for the precise prevention of this disease.展开更多
Chinese hamster with Chinese characteristics is used in experiments,and it is of great value in the field of medical biology research.However,at present,there is no high-efficiency method for evaluating the genetic qu...Chinese hamster with Chinese characteristics is used in experiments,and it is of great value in the field of medical biology research.However,at present,there is no high-efficiency method for evaluating the genetic quality of Chinese hamsters.Here,we developed a novel Chinese hamster genetic quality detection system using single-nucleotide polymorphism(SNP)markers.To find SNP loci,we conducted whole genome sequencing on 24 Chinese hamsters.Then,we employed an SNP locus screening criterion that we set up previously and initially screened 214 SNP loci with wide genome distribution and high polymorphism level.Subsequently,we developed the SNP detection system using a multitarget region capture technique based on second-generation sequencing,and a 55 SNP panel for genetic evaluation of Chinese hamster populations was developed.PopGen.32.analysis results showed that the average effective allele number,Shannon index,observed heterozygosity,expected heterozygosity,average heterozygosity,polymorphism information,and other genetic parameters of Chinese hamster population A were higher than those in population B.Using scientific screening and optimization,we successfully developed a novel Chinese hamster SNP genetic detection system that can efficiently and accurately analyze the genetic quality of the Chinese hamster population.展开更多
Fluoropyrimidines(FP),including 5-fluorouracil and its prodrug capecitabine,are commonly employed in treating various solid tumors.Nonetheless,their use is frequently constrained by severe toxicities in 20%-30%of pati...Fluoropyrimidines(FP),including 5-fluorouracil and its prodrug capecitabine,are commonly employed in treating various solid tumors.Nonetheless,their use is frequently constrained by severe toxicities in 20%-30%of patients.Pharmacogenetic testing for dihydropyrimidine dehydrogenase(DPYD)deficiency,based on DPYD polymorphisms,has notably decreased severe adverse events,improving the safety of FP therapy.A recent D'Amato et al study evaluated the prevalence of DPYD polymorphisms and their effect on FP tolerability among Italian patients with gastrointestinal cancers.Although this study provided important insights into the significance of DPYD testing,its retrospective nature,inconsistency in testing DPYD variants,and lack of consideration for socioeconomic and confounding factors showed considerable limitations.Expanding the screening to include DPYD variants,addressing confounding biases through robust statistical analyses,and implementing prospective studies are critical next steps to strengthen the clinical evidence.Furthermore,the absence of a comprehensive cost-effectiveness analysis highlights the need for further financial assessments to advocate for broader implementation.We emphasized integrating DPYD-guided dosing,pre-treatment genetic counseling,and standardized testing procedures into clinical practice to improve patient outcomes and minimize treatment-related toxicities.展开更多
High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transit...High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transition kinetics remain poorly understood.Here,we investigate the formation of metastable phases and nanostructures in germanium via controllable transition pathways of β-Sn Ge under rapid decompression at different rates.High-resolution transmission electron microscopy reveals three distinct metastable phases with the distinctive nanostructures:an almost perfect st12 Ge crystal,nanosized bc8/r8 structures with amorphous boundaries,and amorphous Ge with nanosized clusters (0.8–2.5 nm).Fast in situ x-ray diffraction and x-ray absorption measurements indicate that these nanostructured products form in certain pressure regions via distinct kinetic pathways and are strongly correlated with nucleation rates and electronic transitions mediated by compression rate,temperature,and stress.This work provides deep insight into the controllable synthesis of metastable materials with unique crystal symmetries and nanostructures for potential applications.展开更多
Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on sp...Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.展开更多
Kawasaki disease(KD)is a systemic vasculitis primarily affecting children,and represents a major cause of acquired heart disease in this population.Although the etiology of KD remains incompletely understood,existing ...Kawasaki disease(KD)is a systemic vasculitis primarily affecting children,and represents a major cause of acquired heart disease in this population.Although the etiology of KD remains incompletely understood,existing genome-wide association studies and genome-wide linkage studies have uncovered various susceptibility genes and their associated chromosomal regions as closely related to the onset and progression of KD.With the rapid advancement of high-throughput DNA sequencing technology,an increasing amount of genomic information pertinent to KD has been discovered,offering new perspectives to investigate the pathogenesis of KD.In particular,genetic polymorphisms play a pivotal role in the immune response,coronary artery lesions,and treatment responsiveness in KD,providing fresh insights into optimizing diagnostic and therapeutic strategies.This article aimed to review and summarize the crucial role of genetic polymorphisms in the pathogenesis of KD,analyze the latest advancements in current research,and discuss the potential applications of gene polymorphism studies in the future diagnosis and treatment of KD.展开更多
BACKGROUND Depression is a disease with a significant global social burden.Single nucleotide polymorphisms(SNPs)are correlated with the development of depression.This study investigates the relationship between polymo...BACKGROUND Depression is a disease with a significant global social burden.Single nucleotide polymorphisms(SNPs)are correlated with the development of depression.This study investigates the relationship between polymorphisms in the GPHN and ATP6V1D gene promoter regions and susceptibility to depression in the Chinese population.AIM To provide new insights into identifying SNPs for predicting depression in the Chinese population.METHODS We conducted a case-control study involving 555 individuals with depression and 509 healthy controls.GPHN rs8020095 and ATP6V1D rs3759755,rs10144417,rs2031564,and rs8016024 in the promoter region were genotyped using nextgeneration sequencing.Dual luciferase reporter genes were employed to assess the transcriptional activity of promoter regions for each SNP genotype,with transcription factors binding to each site predicted using the JASPAR database.RESULTS Compared to healthy controls,the ATP6V1D promoter rs10144417 AG genotype (P = 0.015), rs3759755 AC/CC genotype (P = 0.036), and GPHN gene rs8020095 GA and AA genotypes (GA: P =0.028, GG: P = 0.025) were significantly associated with a lower prevalence of depression. Linked disequilibria werepresent in five SNPs, with the AGATA haplotype frequency in patients significantly lower than in healthy subjects(P = 0.023). Luciferase activity of the rs3759755-A recombinant plasmid was significantly higher than that of thers3759755-C recombinant plasmid (P = 0.026), and the rs8020095-A recombinant plasmid activity was significantlyhigher than that of the rs8020095-G recombinant plasmid (P = 0.001). Transcription factors orthodenticle homeobox2, orthodenticle homeobox 1, forkhead box L1, NK homeobox 3-1, and nuclear factor, interleukin 3 regulateddemonstrated binding affinity with rs3759755A > C and rs8020095A > G.CONCLUSIONThis study demonstrates that SNPs (rs3759755 and rs10144417) in the promoter region of the ATP6V1D and SNP(rs8020095) of GPHN are indeed associated with susceptibility to depression.展开更多
Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole...Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole).These two energetic cocrystal polymorphs(cocrystal 1 and cocrystal 2)exhibit distinct crystal packing styles,which lead to significant variations in their physicochemical properties.Notably,cocrystal 2 has a high density of 1.963 g·cm^(-3)at 170 K,exhibiting high detonation performances(9187 m·s^(-1);38.68 GPa)comparable to HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)meanwhile displaying an improved safety(10 J)relative to RDX(1,3,5-trinitro-1,3,5-triazinane),making it a potential high-energy,low-sensitivity energetic material.This work opens up a new strategy to deeply tune properties of energetic materials by constructing energetic-energetic cocrystal polymorphs.These energetic cocrystal polymorphs represent a new field of energetic materials that has not yet been studied.展开更多
BACKGROUND Gamma-aminobutyric acid type A receptor has long been acknowledged as a key target in the pathophysiology of epilepsy.The GABRA1 and GABRG2 genes encode the α1 and γ2 subunits of the gamma-aminobutyric ac...BACKGROUND Gamma-aminobutyric acid type A receptor has long been acknowledged as a key target in the pathophysiology of epilepsy.The GABRA1 and GABRG2 genes encode the α1 and γ2 subunits of the gamma-aminobutyric acid type A receptor,a key protein implicated in the development of epilepsy.However,the specific association of the GABRA1 IVS11+15 A>G rs2279020 and GABRG2 G3145A rs211013 polymorphisms with antiepileptic drug resistance has been elucidated in only a limited number of investigations.AIM To elucidate the association between GABRA1 IVS11+15 A>G rs2279020 and GABRG2 G3145A rs211013 gene mutations and drug resistance in epilepsy patients.METHODS A total of 100 epilepsy patients(50 drug responsive and 50 drug resistant subjects)were recruited and rs2279020-and rs211013-polymorphism analyzed by restriction fragment length polymorphism-polymerase chain reaction technique.RESULTS For GABRA1 rs2279020 polymorphism,AG genotype exhibited risk association with an odds ratio of 0.966(95%confidence interval=0.346-2.698)with P value=0.948;however,this association did not achieve statistical significance(P=0.948).Additionally,a higher risk association was identified with the GG genotype,with an odds ratio of 1.808(P=0.382).GABRG2 rs211013 polymorphism revealed no significant association with drug resistance.CONCLUSION The GABRA1 rs2279020 genetic variation is associated with an increased risk for the AG and GG variants,although this association was not statistically significant.Limited investigations have explored the relevance of genetic variations in epilepsy and drug resistance.Longitudinal research is needed to better understand their significance in epilepsy management and to optimize therapeutic strategies.展开更多
Objective:To investigate the association between rs2110385 polymorphisms of the visfatin gene and the risk of type 2 diabetic retinopathy(DR).Methods:172 Han subjects were selected from Xi’an Shaanxi Province;140 pat...Objective:To investigate the association between rs2110385 polymorphisms of the visfatin gene and the risk of type 2 diabetic retinopathy(DR).Methods:172 Han subjects were selected from Xi’an Shaanxi Province;140 patients with type 2 diabetes mellitus(T2DM)and 32 normal controls(NC)were selected from our hospital.Patients with diabetes were divided into a non-DR group(T2DM)(n=69)and a nonproliferative diabetic retinopathy Group(DR)(n=71)after dilated fundus photography and fundus fluorescein angiography.rs2110385/AluⅠgenotypes were detected by standardized polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP),and the differences in the detection rates of different genotypes in the above populations were compared.Results:1)The visfatin level in the DR Group was significantly higher than that in the NC and T2DM groups(P<0.05).2)The frequency of GG genotype and G allele of rs2110385 in the DR Group were higher than those in the T2DM and NC groups(80.3,69.6,50.0,86.6,79,65.6,P<0.05).3)There were significant differences in allele frequency and genotype frequency distribution of rs2110385 between the DR Group and the NC group(P<0.01).Conclusion:Visfatin increased in the nonproliferative diabetic retinopathy group and could be a potential indicator for the clinical prediction of DR.The G allele of the rs2110385 polymorphic site may be related to the risk of DR.展开更多
The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been p...The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.展开更多
Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to ev...Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.展开更多
Prevalence and importance of polymorphism occurring in pharmaceutical compounds are well recognized.It is of great importance to prepare and select the right form from the beginning during drug discovery and developme...Prevalence and importance of polymorphism occurring in pharmaceutical compounds are well recognized.It is of great importance to prepare and select the right form from the beginning during drug discovery and development.This review introduces the basic concepts of“What is polymorphism?”,addresses a fundamental question of“Why do polymorphs form?”,and provides practical guidelines of“How to prepare polymorphs?”“How to evaluate the relative thermodynamic stability between polymorphs?”,and“How to analyze polymorphs?”.Moreover,case studies of pharmaceutically important polymorphs are provided.展开更多
BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus(T2DM)is currently controversial.It is unknown whether this association can be gene realized across dif...BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus(T2DM)is currently controversial.It is unknown whether this association can be gene realized across different populations.AIM To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM.METHODS We searched PubMed,Embase,Web of Science,Cochrane Library,Medline,Baidu Academic,China National Knowledge Infrastructure,China Biomedical Literature Database,and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12,2022.Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature.RESULTS Twelve case–control studies(including 11273 cases and 11654 controls)met our inclusion criteria.In the full population,allelic model[odds ratio(OR):1.19;95%confidence interval(95%CI):1.09–1.29;P<0.0001],recessive model(OR:1.20;95%CI:1.11–1.29;P<0.0001),dominant model(OR:1.27.95%CI:1.14–1.42;P<0.0001),and codominant model(OR:1.36;95%CI:1.15–1.60;P=0.0003)(OR:1.22;95%CI:1.10–1.36;P=0.0002)indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM.In stratified analysis,this association was confirmed in Asian populations:allelic model(OR:1.25;95%CI:1.13–1.37;P<0.0001),recessive model(OR:1.29;95%CI:1.11–1.49;P=0.0007),dominant model(OR:1.35;95%CI:1.20–1.52;P<0.0001),codominant model(OR:1.49;95%CI:1.22–1.81;P<0.0001)(OR:1.26;95%CI:1.16–1.36;P<0.0001).In non-Asian populations,this association was not significant:Allelic model(OR:1.06,95%CI:0.98–1.14;P=0.12),recessive model(OR:1.04;95%CI:0.75–1.42;P=0.83),dominant model(OR:1.06;95%CI:0.98–1.15;P=0.15),codominant model(OR:1.08;95%CI:0.82–1.42;P=0.60.OR:1.15;95%CI:0.95–1.39;P=0.14).CONCLUSION KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population.Carriers of the C allele had a higher risk of T2DM.This association was not significant in non-Asian populations.展开更多
BACKGROUND Major depressive disorder(MDD)is a substantial global health concern,and its treatment is complicated by the variability in individual response to antide-pressants.AIM To consolidate research and clarify th...BACKGROUND Major depressive disorder(MDD)is a substantial global health concern,and its treatment is complicated by the variability in individual response to antide-pressants.AIM To consolidate research and clarify the impact of genetic variation on MDD treatment outcomes.METHODS Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,a systematic search across PubMed,EMBASE,Web of Science,and the Cochrane Library was conducted without date restrictions,utilizing key terms related to MDD,serotonin 1A receptor polymorphism(5-HTR1A),C-1019G polymorphism,and antidepressant response.Studies meeting inclusion criteria were thoroughly screened,and quality assessed using the Newcastle-Ottawa Scale.Statistical analyses,includingχ2 and I²values,were used to evaluate heterogeneity and fixed-effect or random-effect models were applied accordingly.RESULTS The initial search yielded 1216 articles,with 11 studies meeting criteria for inclusion.Analysis of various genetic models showed no significant association between the 5-HTR1A C-1019G polymorphism and antidepressant efficacy.The heterogeneity was low to moderate,and no publication bias was detected through funnel plot symmetry and Egger's and Begg's tests.CONCLUSION This meta-analysis does not support a significant association between the 5-HTR1A C-1019G polymorphism and the efficacy of antidepressant treatment in MDD.The findings call for further research with larger cohorts to substantiate these results and enhance the understanding of antidepressant pharmacogenetics.展开更多
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金funded by the National Natural Science Foundation of China(grant no.32270238 and 31870311).
文摘Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.
文摘BACKGROUND Fluoropyrimidines are metabolized in the liver by the enzyme dihydropyrimidine dehydrogenase(DPD),encoded by the DPYD gene.About 7%of the European population is a carrier of DPYD gene polymorphisms associated with reduced DPD enzyme activity.AIM To assess the prevalence of DPYD polymorphisms and their impact on fluoropyrimidine tolerability in Italian patients with gastrointestinal malignancies.METHODS A total of 300 consecutive patients with a diagnosis of gastrointestinal malignancy and treated with a fluoropyrimidine-based regimen were included in the analysis and divided into two cohorts:(1)149 patients who started fluoropyrimidines after DPYD testing;and(2)151 patients treated without DPYD testing.Among the patients in cohort A,15%tested only the DPYD2A polymorphism,19%tested four polymorphisms(DPYD2A,HapB3,c.2846A>T,and DPYD13),and 66%tested five polymorphisms including DPYD6.RESULTS Overall,14.8%of patients were found to be carriers of a DPYD variant,the most common being DPYD6(12.1%).Patients in cohort A reported≥G3 toxicities(P=0.00098),particularly fewer nonhematological toxicities(P=0.0028)compared with cohort B,whereas there was no statistically significant difference between the two cohorts in hematological toxicities(P=0.6944).Significantly fewer chemotherapy dose reductions(P=0.00002)were observed in cohort A compared to cohort B,whereas there was no statistically significant differences in chemotherapy delay.CONCLUSION Although this study had a limited sample size,it provides additional information on the prevalence of DPYD polymorphisms in the Italian population and highlights the role of pharmacogenetic testing to prevent severe toxicity.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.22075168,21701105,21871167&91961201)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SX-FR003)。
文摘In our work,polymorphism strategy has been successfully applied to tune up chromism and luminescence properties of viologen-based materials.Two polymorphs of viologen-based complexes ofα-CdBr_(2)(PHSQ)_(2)(H_(2)O)_(2)(1)andβ-CdBr_(2)(PHSQ)_(2)(H_(2)O)_(2)(2)(PHSQ=N-(4-sulfophenyl)-4,4-bipyridinium)were synthesized by changing the solvent.They can both respond to UV light and electricity in the manner of chromism visible to the naked eye and the coloration states have good reversibility,through which an inkless erasable printing model has been established.But the coloration contrast of 1 is higher compared to 2.Meanwhile,they both exhibit photoluminescence properties and the intensity of 1 is twice that of 2,which is accompanied by photoquenching upon continuous UV light irradiation.The only divergence of disordered/ordered O atoms in the two crystalline compounds leads to significantly different chromic and luminescent properties.Further explorations simultaneously demonstrate that the different chromic performance between 1 and 2 should attribute to the alteration of stimulus-induced(light/electricity)electron transfer channels caused by the ordered/disordered O atoms in the complexes,which is achieved through C-H···O and O-H···O interactions to change crystal arrangement and structural rigidity,thus affect luminescent properties.
文摘Methylenetetrahydrofolate reductase(MTHFR)is a key enzyme in folate metabolism.Its genetic polymorphisms affect the metabolism of methyl donors,including folate and betaine,and are consequently associated with the development of various chronic diseases such as stroke and neoplasms.Methods This umbrella review,covering the period from 2006 to 2025,searched PubMed,Embase,Web of Science,Medline,CNKI,WanFang,and Cochrane Library databases for published systematic reviews and meta-analyses of polymorphisms relating to the MTHFR C677T and A1298C gene polymorphisms and various chronic diseases.Subsequently,this study assessed methodological quality with AMSTAR-2,while the strength of evidence for each outcome was graded according to the GRADE and the credibility evaluation.This umbrella review included 39 studies related to 8 diseases classified according to the ICD-10 classification.Results Overall,C677T exhibited a positive correlation with depression(allele:OR=1.18,95%CI:1.13-1.24;dominant:OR=1.16,95%CI:1.09-1.23;recessive:OR=1.42,95%CI:1.30-1.56;homozygote:OR=1.48,95%CI:1.34-1.63),and polycystic ovary syndrome(allele:OR=1.35,95%CI:1.24-1.46;dominant:OR=1.46,95%CI:1.30-1.64;recessive:OR=1.39,95%CI:1.19-1.62;homozygote:OR=1.63,95%CI:1.38-1.93),and exhibited a negative correlation with oral cancer(allele:OR=0.24,95%CI:0.22-0.26;dominant:OR=0.14,95%CI:0.12-0.16;recessive:OR=0.31,95%CI:0.28-0.35;homozygote:OR=0.14,95%CI:0.12-0.16).A1298C was positively associated with polycystic ovary syndrome in four models(allele:OR=1.93,95%CI:1.67-2.21;dominant:OR=1.93,95%CI:1.64-2.27;recessive:OR=3.72,95%CI:2.47-5.61;homozygote:OR=4.38,95%CI:2.90-6.62).Conclusion The MTHFR C677T and A1298C gene polymorphisms demonstrated significant associations with non-communicable diseases,thereby contributing to the advancement of precision medicine.
基金Supported by the National Key Research and Development Program of China,No.2021YFC2700700 and No.2021YFC2700704Capital’s Funds for Health Improvement and Research(CFH)in People’s Republic of China,No.2020-1-5112.
文摘BACKGROUND There are conflicting results on the potential correlation between folic acid and gestational diabetes mellitus(GDM),and the correlation between genetic factors related to folic acid metabolism pathways and GDM remains to be revealed.AIM To examine the association between single-nucleotide polymorphisms(SNPs)of enzyme genes in the folate metabolite pathway as well as that between GDM-related genes and risk for GDM.METHODS A nested case-control study was conducted with GDM cases(n=412)and healthy controls(n=412).DNA was extracted blood samples and SNPs were genotyped using Agena Bioscience’s MassARRAY gene mass spectrometry system.The associations between different SNPs of genes and the risk for GDM were estimated using logistic regression models.The generalized multi-factor dimensionality reduction(GMDR)method was used to analyze gene-gene and gene-environment interactions using the GMDR 0.9 software.RESULTS The variation allele frequency of melatonin receptor 1B(MTNR1B)rs10830963 was higher in the GDM group than in controls(P<0.05).MTNR1B rs10830963 mutant G was associated with risk for GDM[adjusted odds ratio(aOR):1.43;95%confidence interval(95%CI):1.13-1.80]in the additive model.MTNR1B rs10830963 GG+GC was significantly associated with the risk for GDM(aOR:1.65;95%CI:1.23-2.22)in the dominant model.The two-locus model of MTNR1B rs10830963 and CHEMERIN rs4721 was the best model(P<0.05)for gene-gene interactions in the GMDR results.The high-risk rs10830963×rs4721 type of interaction was a risk factor for GDM(aOR:2.09;95%CI:1.49-2.93).CONCLUSION This study does not find an association between SNPs of folate metabolic enzymes and risk for GDM.The G mutant allele of MTNR1B rs10830963 is identified as a risk factor for GDM in the additive model,and there may be gene-gene interactions between MTNR1B rs10830963 and CHEMERIN rs4721.It is conducive to studying the causes of GDM and provides a new perspective for the precise prevention of this disease.
基金National Key Research and Development Program for Young scientists,Grant/Award Number:2021YFF0703200National Natural Foundation Joint Fund for Regional Innovation and Development,Grant/Award Number:U21A20194+1 种基金National Natural Science Foundation of China,Grant/Award Number:32170540National Key Research and Development Program,Grant/Award Number:2022YFF0711005。
文摘Chinese hamster with Chinese characteristics is used in experiments,and it is of great value in the field of medical biology research.However,at present,there is no high-efficiency method for evaluating the genetic quality of Chinese hamsters.Here,we developed a novel Chinese hamster genetic quality detection system using single-nucleotide polymorphism(SNP)markers.To find SNP loci,we conducted whole genome sequencing on 24 Chinese hamsters.Then,we employed an SNP locus screening criterion that we set up previously and initially screened 214 SNP loci with wide genome distribution and high polymorphism level.Subsequently,we developed the SNP detection system using a multitarget region capture technique based on second-generation sequencing,and a 55 SNP panel for genetic evaluation of Chinese hamster populations was developed.PopGen.32.analysis results showed that the average effective allele number,Shannon index,observed heterozygosity,expected heterozygosity,average heterozygosity,polymorphism information,and other genetic parameters of Chinese hamster population A were higher than those in population B.Using scientific screening and optimization,we successfully developed a novel Chinese hamster SNP genetic detection system that can efficiently and accurately analyze the genetic quality of the Chinese hamster population.
文摘Fluoropyrimidines(FP),including 5-fluorouracil and its prodrug capecitabine,are commonly employed in treating various solid tumors.Nonetheless,their use is frequently constrained by severe toxicities in 20%-30%of patients.Pharmacogenetic testing for dihydropyrimidine dehydrogenase(DPYD)deficiency,based on DPYD polymorphisms,has notably decreased severe adverse events,improving the safety of FP therapy.A recent D'Amato et al study evaluated the prevalence of DPYD polymorphisms and their effect on FP tolerability among Italian patients with gastrointestinal cancers.Although this study provided important insights into the significance of DPYD testing,its retrospective nature,inconsistency in testing DPYD variants,and lack of consideration for socioeconomic and confounding factors showed considerable limitations.Expanding the screening to include DPYD variants,addressing confounding biases through robust statistical analyses,and implementing prospective studies are critical next steps to strengthen the clinical evidence.Furthermore,the absence of a comprehensive cost-effectiveness analysis highlights the need for further financial assessments to advocate for broader implementation.We emphasized integrating DPYD-guided dosing,pre-treatment genetic counseling,and standardized testing procedures into clinical practice to improve patient outcomes and minimize treatment-related toxicities.
基金supported by the National Nature Science Foundation of China(NSFC)(Grant No.11974033)Xuqiang Liu acknowledges support from the National Postdoctoral Foundation Project of China under Grant No.GZC20230215+2 种基金the National Nature Science Foundation of China under Grants No.12404001The XRD measurements at room and high temperatures were performed at the 4W2 HPStation of the Beijing Synchrotron Radiation Facility(BSRF)and beamline 15U1 of the Shanghai Synchrotron Radiation Facility(SSRF)In situ high-pressure,low-temperature XRD measurements were conducted at sector 16 ID-B,HPCAT of the Advanced Photon Source,and were supported by DOE-NNSA under Award No.DE-NA0001974.
文摘High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transition kinetics remain poorly understood.Here,we investigate the formation of metastable phases and nanostructures in germanium via controllable transition pathways of β-Sn Ge under rapid decompression at different rates.High-resolution transmission electron microscopy reveals three distinct metastable phases with the distinctive nanostructures:an almost perfect st12 Ge crystal,nanosized bc8/r8 structures with amorphous boundaries,and amorphous Ge with nanosized clusters (0.8–2.5 nm).Fast in situ x-ray diffraction and x-ray absorption measurements indicate that these nanostructured products form in certain pressure regions via distinct kinetic pathways and are strongly correlated with nucleation rates and electronic transitions mediated by compression rate,temperature,and stress.This work provides deep insight into the controllable synthesis of metastable materials with unique crystal symmetries and nanostructures for potential applications.
基金Supported by National Natural Science Foundation of China,No.32270768,No.82273970,No.32070726,and No.82370715National Key R&D Program of China,No.2023YFC2507904the Innovation Group Project of Hubei Province,No.2023AFA026.
文摘Hepatitis B virus remains a major cause of cirrhosis and hepatocellular carcinoma,with genetic polymorphisms and mutations influencing immune responses and disease progression.Nguyen et al present novel findings on specific human leukocyte antigen(HLA)alleles,including rs2856718 of HLA-DQ and rs3077 and rs9277535 of HLA-DP,which may predispose individuals to cirrhosis and liver cancer,based on multi-clustering analysis.Here,we discuss the feasibility of this approach and identify key areas for further investigation,aiming to offer insights for advancing clinical practice and research in liver disease and related cancers.
文摘Kawasaki disease(KD)is a systemic vasculitis primarily affecting children,and represents a major cause of acquired heart disease in this population.Although the etiology of KD remains incompletely understood,existing genome-wide association studies and genome-wide linkage studies have uncovered various susceptibility genes and their associated chromosomal regions as closely related to the onset and progression of KD.With the rapid advancement of high-throughput DNA sequencing technology,an increasing amount of genomic information pertinent to KD has been discovered,offering new perspectives to investigate the pathogenesis of KD.In particular,genetic polymorphisms play a pivotal role in the immune response,coronary artery lesions,and treatment responsiveness in KD,providing fresh insights into optimizing diagnostic and therapeutic strategies.This article aimed to review and summarize the crucial role of genetic polymorphisms in the pathogenesis of KD,analyze the latest advancements in current research,and discuss the potential applications of gene polymorphism studies in the future diagnosis and treatment of KD.
基金Supported by the Natural Science Foundation of Sichuan,China,No.2022NSFSC0778Research Project Foundation of Sichuan Applied Psychology Research Center,No.CSXL-24202+1 种基金Foundation of Sichuan Clinical Research Center for Geriatrics,No.24LHLNYX1-04 and No.24LHLNYX1-06and the Key Laboratory Foundation for Development and Regeneration of Sichuan Province,No.24LHFYSZ1-25.
文摘BACKGROUND Depression is a disease with a significant global social burden.Single nucleotide polymorphisms(SNPs)are correlated with the development of depression.This study investigates the relationship between polymorphisms in the GPHN and ATP6V1D gene promoter regions and susceptibility to depression in the Chinese population.AIM To provide new insights into identifying SNPs for predicting depression in the Chinese population.METHODS We conducted a case-control study involving 555 individuals with depression and 509 healthy controls.GPHN rs8020095 and ATP6V1D rs3759755,rs10144417,rs2031564,and rs8016024 in the promoter region were genotyped using nextgeneration sequencing.Dual luciferase reporter genes were employed to assess the transcriptional activity of promoter regions for each SNP genotype,with transcription factors binding to each site predicted using the JASPAR database.RESULTS Compared to healthy controls,the ATP6V1D promoter rs10144417 AG genotype (P = 0.015), rs3759755 AC/CC genotype (P = 0.036), and GPHN gene rs8020095 GA and AA genotypes (GA: P =0.028, GG: P = 0.025) were significantly associated with a lower prevalence of depression. Linked disequilibria werepresent in five SNPs, with the AGATA haplotype frequency in patients significantly lower than in healthy subjects(P = 0.023). Luciferase activity of the rs3759755-A recombinant plasmid was significantly higher than that of thers3759755-C recombinant plasmid (P = 0.026), and the rs8020095-A recombinant plasmid activity was significantlyhigher than that of the rs8020095-G recombinant plasmid (P = 0.001). Transcription factors orthodenticle homeobox2, orthodenticle homeobox 1, forkhead box L1, NK homeobox 3-1, and nuclear factor, interleukin 3 regulateddemonstrated binding affinity with rs3759755A > C and rs8020095A > G.CONCLUSIONThis study demonstrates that SNPs (rs3759755 and rs10144417) in the promoter region of the ATP6V1D and SNP(rs8020095) of GPHN are indeed associated with susceptibility to depression.
基金support for this study by the National Natural Science Foundation of China(Grant No.22275175)。
文摘Herein,a first example of energetic-energetic cocrystal polymorphs with a 1:1 M ratio was discovered by cocrystallizing CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane)with 1,3-DNP(1,3-dinitropyrazole).These two energetic cocrystal polymorphs(cocrystal 1 and cocrystal 2)exhibit distinct crystal packing styles,which lead to significant variations in their physicochemical properties.Notably,cocrystal 2 has a high density of 1.963 g·cm^(-3)at 170 K,exhibiting high detonation performances(9187 m·s^(-1);38.68 GPa)comparable to HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)meanwhile displaying an improved safety(10 J)relative to RDX(1,3,5-trinitro-1,3,5-triazinane),making it a potential high-energy,low-sensitivity energetic material.This work opens up a new strategy to deeply tune properties of energetic materials by constructing energetic-energetic cocrystal polymorphs.These energetic cocrystal polymorphs represent a new field of energetic materials that has not yet been studied.
文摘BACKGROUND Gamma-aminobutyric acid type A receptor has long been acknowledged as a key target in the pathophysiology of epilepsy.The GABRA1 and GABRG2 genes encode the α1 and γ2 subunits of the gamma-aminobutyric acid type A receptor,a key protein implicated in the development of epilepsy.However,the specific association of the GABRA1 IVS11+15 A>G rs2279020 and GABRG2 G3145A rs211013 polymorphisms with antiepileptic drug resistance has been elucidated in only a limited number of investigations.AIM To elucidate the association between GABRA1 IVS11+15 A>G rs2279020 and GABRG2 G3145A rs211013 gene mutations and drug resistance in epilepsy patients.METHODS A total of 100 epilepsy patients(50 drug responsive and 50 drug resistant subjects)were recruited and rs2279020-and rs211013-polymorphism analyzed by restriction fragment length polymorphism-polymerase chain reaction technique.RESULTS For GABRA1 rs2279020 polymorphism,AG genotype exhibited risk association with an odds ratio of 0.966(95%confidence interval=0.346-2.698)with P value=0.948;however,this association did not achieve statistical significance(P=0.948).Additionally,a higher risk association was identified with the GG genotype,with an odds ratio of 1.808(P=0.382).GABRG2 rs211013 polymorphism revealed no significant association with drug resistance.CONCLUSION The GABRA1 rs2279020 genetic variation is associated with an increased risk for the AG and GG variants,although this association was not statistically significant.Limited investigations have explored the relevance of genetic variations in epilepsy and drug resistance.Longitudinal research is needed to better understand their significance in epilepsy management and to optimize therapeutic strategies.
基金Xi’an Science and Technology Bureau Fund(23YXYJ0103)Shaanxi Provincial Science and Technology Department Fund(S2022-YF-YBSF-0939).
文摘Objective:To investigate the association between rs2110385 polymorphisms of the visfatin gene and the risk of type 2 diabetic retinopathy(DR).Methods:172 Han subjects were selected from Xi’an Shaanxi Province;140 patients with type 2 diabetes mellitus(T2DM)and 32 normal controls(NC)were selected from our hospital.Patients with diabetes were divided into a non-DR group(T2DM)(n=69)and a nonproliferative diabetic retinopathy Group(DR)(n=71)after dilated fundus photography and fundus fluorescein angiography.rs2110385/AluⅠgenotypes were detected by standardized polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP),and the differences in the detection rates of different genotypes in the above populations were compared.Results:1)The visfatin level in the DR Group was significantly higher than that in the NC and T2DM groups(P<0.05).2)The frequency of GG genotype and G allele of rs2110385 in the DR Group were higher than those in the T2DM and NC groups(80.3,69.6,50.0,86.6,79,65.6,P<0.05).3)There were significant differences in allele frequency and genotype frequency distribution of rs2110385 between the DR Group and the NC group(P<0.01).Conclusion:Visfatin increased in the nonproliferative diabetic retinopathy group and could be a potential indicator for the clinical prediction of DR.The G allele of the rs2110385 polymorphic site may be related to the risk of DR.
基金supported by the National Key Research and Development Program of China(2022YFB2901403)the Songshan Laboratory Project(221100210900-02).
文摘The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures.Thus far,it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system,making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics.Here,we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement(S),multiplexity(M),and variousness(V)—which we name as the“impossible SMV triangle”dilemma.It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking,methodology,and practice norms.In this paper,we propose a theoretical framework called the polymorphic network environment(PNE),the first principle of which is to separate or decouple application network systems from the infrastructure environment and,under the given resource conditions,use core technologies such as the elementization of network baselines,the dynamic aggregation of resources,and collaborative software and hardware arrangements to generate the capability of the“network of networks.”This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions.An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.
基金supported by grants from the Innovation and Cultivation Fund Project of the Seventh Medical Center,PLA General Hospital(No.QZX-2023-7)Postdoctoral Science Foundation of China(No.2021M691649)Postdoctoral Science Foundation of Jiangsu Province(No.2021K524C).
文摘Objective:Nucleotide excision repair(NER)plays a vital role in maintaining genome stability,and the effect of NER gene polymorphisms on hepatoblastoma susceptibility is still under investigation.This study aimed to evaluate the relationship between NER gene polymorphisms and the risk of hepatoblastoma in Eastern Chinese Han children.Methods:In this five-center case-control study,we enrolled 966 subjects from East China(193 hepatoblastoma patients and 773 healthy controls).The TaqMan method was used to genotype 19 single nucleotide polymorphisms(SNPs)in NER pathway genes,including ERCC1,XPA,XPC,XPD,XPF,and XPG.Then,multivariate logistic regression analysis was performed,and odds ratios(ORs)and 95%confidence intervals(95%CIs)were utilized to assess the strength of associations.Results:Three SNPs were related to hepatoblastoma risk.XPC rs2229090 and XPD rs3810366 significantly contributed to hepatoblastoma risk according to the dominant model(adjusted OR=1.49,95%CI=1.07−2.08,P=0.019;adjusted OR=1.66,95%CI=1.12−2.45,P=0.012,respectively).However,XPD rs238406 conferred a significantly decreased risk of hepatoblastoma under the dominant model(adjusted OR=0.68,95%CI=0.49−0.95;P=0.024).Stratified analysis demonstrated that these significant associations were more prominent in certain subgroups.Moreover,there was evidence of functional implications of these significant SNPs suggested by online expression quantitative trait loci(eQTLs)and splicing quantitative trait loci(sQTLs)analysis.Conclusions:In summary,NER pathway gene polymorphisms(XPC rs2229090,XPD rs3810366,and XPD rs238406)are significantly associated with hepatoblastoma risk,and further research is required to verify these findings.
基金This research was supported by a grant(14172MFDS189)from Ministry of Food and Drug Safety in 2014Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(2014R1A1A1006429).
文摘Prevalence and importance of polymorphism occurring in pharmaceutical compounds are well recognized.It is of great importance to prepare and select the right form from the beginning during drug discovery and development.This review introduces the basic concepts of“What is polymorphism?”,addresses a fundamental question of“Why do polymorphs form?”,and provides practical guidelines of“How to prepare polymorphs?”“How to evaluate the relative thermodynamic stability between polymorphs?”,and“How to analyze polymorphs?”.Moreover,case studies of pharmaceutically important polymorphs are provided.
基金Supported by the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China,No.2023AH050561,No.2022AH051143,No.KJ2021A0266,and No.KJ2021A1228School-level offline courses,No.2021xjkc13.
文摘BACKGROUND The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus(T2DM)is currently controversial.It is unknown whether this association can be gene realized across different populations.AIM To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM.METHODS We searched PubMed,Embase,Web of Science,Cochrane Library,Medline,Baidu Academic,China National Knowledge Infrastructure,China Biomedical Literature Database,and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12,2022.Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature.RESULTS Twelve case–control studies(including 11273 cases and 11654 controls)met our inclusion criteria.In the full population,allelic model[odds ratio(OR):1.19;95%confidence interval(95%CI):1.09–1.29;P<0.0001],recessive model(OR:1.20;95%CI:1.11–1.29;P<0.0001),dominant model(OR:1.27.95%CI:1.14–1.42;P<0.0001),and codominant model(OR:1.36;95%CI:1.15–1.60;P=0.0003)(OR:1.22;95%CI:1.10–1.36;P=0.0002)indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM.In stratified analysis,this association was confirmed in Asian populations:allelic model(OR:1.25;95%CI:1.13–1.37;P<0.0001),recessive model(OR:1.29;95%CI:1.11–1.49;P=0.0007),dominant model(OR:1.35;95%CI:1.20–1.52;P<0.0001),codominant model(OR:1.49;95%CI:1.22–1.81;P<0.0001)(OR:1.26;95%CI:1.16–1.36;P<0.0001).In non-Asian populations,this association was not significant:Allelic model(OR:1.06,95%CI:0.98–1.14;P=0.12),recessive model(OR:1.04;95%CI:0.75–1.42;P=0.83),dominant model(OR:1.06;95%CI:0.98–1.15;P=0.15),codominant model(OR:1.08;95%CI:0.82–1.42;P=0.60.OR:1.15;95%CI:0.95–1.39;P=0.14).CONCLUSION KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population.Carriers of the C allele had a higher risk of T2DM.This association was not significant in non-Asian populations.
文摘BACKGROUND Major depressive disorder(MDD)is a substantial global health concern,and its treatment is complicated by the variability in individual response to antide-pressants.AIM To consolidate research and clarify the impact of genetic variation on MDD treatment outcomes.METHODS Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,a systematic search across PubMed,EMBASE,Web of Science,and the Cochrane Library was conducted without date restrictions,utilizing key terms related to MDD,serotonin 1A receptor polymorphism(5-HTR1A),C-1019G polymorphism,and antidepressant response.Studies meeting inclusion criteria were thoroughly screened,and quality assessed using the Newcastle-Ottawa Scale.Statistical analyses,includingχ2 and I²values,were used to evaluate heterogeneity and fixed-effect or random-effect models were applied accordingly.RESULTS The initial search yielded 1216 articles,with 11 studies meeting criteria for inclusion.Analysis of various genetic models showed no significant association between the 5-HTR1A C-1019G polymorphism and antidepressant efficacy.The heterogeneity was low to moderate,and no publication bias was detected through funnel plot symmetry and Egger's and Begg's tests.CONCLUSION This meta-analysis does not support a significant association between the 5-HTR1A C-1019G polymorphism and the efficacy of antidepressant treatment in MDD.The findings call for further research with larger cohorts to substantiate these results and enhance the understanding of antidepressant pharmacogenetics.