Novel bioengineering functional organoboron polymers were synthesized by 1) amidolysis of poly(acrcylic acid) (PAA) with 2-aminoethyldiphenyl borinate (2-AEPB), 2) esterification of organoboron PAA polymer (PAA-B) wit...Novel bioengineering functional organoboron polymers were synthesized by 1) amidolysis of poly(acrcylic acid) (PAA) with 2-aminoethyldiphenyl borinate (2-AEPB), 2) esterification of organoboron PAA polymer (PAA-B) with a-hydroxy-methoxypoly(ethylene oxide) (PEO) as a compatibilizer and 3) conjugation of organoboron PEO branches (PAA-B-PEO) with folic acid (FA) as a targeting agent. Structure and composition of the synthesized polymers were characterized by FTIR-ATR and 1H (13C) NMR spectroscopy, chemical and physical analysis methods. Anti-tumor activity of organoboron functional polymer and its complex with FA (PAA-B-PEO-F) against cancer and normal cells were evaluated by using different biochemical methods such as cytotoxicity, statistical, apoptotic and necrotic cell indexes, double staining and caspase-3 immune staining, light and fluorescence inverted microscope analyses. It was found that citotoxicity and apoptotic/necrotic effects of polymers significantly depend on the structure and composition of studied polymers, and increase the following raw: PAA << PAA-B < PAA-B-PEO < PAA-B-PEO-F. Among them, PAA-B-PEO-F complex at 400 mg mL–1 concentration as a therapeutic drug exhibits minimal toxicity toward the nor-mal cells, but influential for HeLa cancer cells.展开更多
The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal compl...The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal complexes, which are widelyused for solving many practical tasks. The nanosecond dynamics of macromolecules are ahighly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solvethe problems of studying IPC formation and stability and to investigate the interpolymerreactions of exchange and substitution. The investigation of changes in the rotational mo-bility of globular protein molecules as a whole makes it possible to determine the complexcomposition and its stability, and to control the course of polymer-protein conjugate forma-tion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determin-ing the equilibrium constants of the S-polymer complex formation was developed on thebasis of the study of polymer chains mobility. It is established that nanosecond dynamicsinfluences the course of chemical reactions in polymer chains. Moreover, the marked effectof the nanosecond dynamics is also revealed in the study of photophysical processes (theformation of excimers and energy migration of electron excitation) in polymers with pho-toactive groups. It was found that the efficiency of both processes increases with increasingthe mobility of side chains, the carriers of photoactive groups.展开更多
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr...In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.展开更多
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni...Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.展开更多
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors....Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a ...As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an...Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.展开更多
Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1....Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions.展开更多
We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),campho...We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),camphoric acid(H_(2)cpa)].In[Cd(dip)(cda)]·4H_(2)O}_(n)(1),the Cd^(2+)ions,acting as tetrahedral nodes,are linked by dipand cda^(2-)ligands with four Cd^(2+)ions into five-fold interpenetrating network array of topology of dia.In{[Cd(dip)(cpa)]·4H_(2)O}_(n)(2),the Cd^(2+)ions,acting as a 4-connector,are linked by cpa^(2-)and dip ligands into a 3D framework ofcds topology.In{[Ni(dia)_(2)Cl_(2)]·DMF}_(n)(3),the Ni^(2+)ion is linked by four dia ligands into a layer structure,and 1Dchannels of a cross-section of 1.35 nm×0.96 nm are formed.In{[Cd(dia)_(2)(H_(2)O)_(2)](NO_(3))_(2)·2DMSO}n(4),the dia ligandsconnected Cd^(2+)ions into a 2D layer,and 1D channels are formed between adjacent layers with a cross-section of0.87 nm×0.43 nm.In[Zn(dip)Cl_(2)]_(n)(5),the Zn^(2+)ion is linked by dip ligands into an infinite 1D chain.The infrared,thermal gravimetric,and fluorescent emission data were collected and analyzed for these coordination polymers.CCDC:2356055,1;2440075,2;2356057,3;2356057,4;2356059,5.展开更多
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s...Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.展开更多
Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfull...Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2.展开更多
Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has pr...Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has prompted the exploration of innovative materials and technical solutions.Shape-memory polymers,as advanced intelligent materials,exhibit considerable potential in minimally invasive surgical applications.Herein,we developed a novel thermosetting shape-memory polymer,poly(L-lactic acid)-trimethylene carbonate-glycolic acid(PLLA-TMC-GA),for the fabrication of bioengineered scaffolds with body temperature-activated shape-memory functionality.We comprehensively evaluated the mechanical properties,thermal stability,shape-memory capabilities,biocompatibility,biodegradability,and 3 D printing performance of PLLA-TMC-GA terpolymers with various compositions.The results indicate that PLLA-TMC-GA exhibits exceptional shape-memory performance,adjustable material properties,favorable biocompatibility,and the potential for controlled biodegradation and reabsorption.The use of PLLA-TMC-GA as a biodegradable shape-memory polymer allows the reduction of implant volume,simplifies implantation,and enables on-demand activation at body temperature.These characteristics present new opportunities for the advancement of minimally invasive surgical techniques.展开更多
Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovat...Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovative materials,strengthened policy support,and maturing industrial chains,these polymers are demonstrating transformative potential in critical sectors,such as environmental protection,healthcare,and industrial manufacturing,promising for reshaping the future landscape of the plastics industry.展开更多
Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Comp...Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Compared with oxide FEs,polymer FEs possess good flexible and shape adaptability,making them promising candidates for flexible electronics and biocompatible devices[4].展开更多
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic...The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.展开更多
The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymer...The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymers[Er(CA)_(1.5)(bpy)(DMF)]_(n)(1)and[Er(CA)_(1.5)(phen)(DMF)]_(n)(2)(H_(2)CA=2,5-dichloro-3,6-dihydroxy-p-quinone,bpy=2,2'-bipyridine,phen=1,10-phenanthroline)were synthesized and fully characterized.By the irradiation of ultraviolet light,1 and 2 were converted to la and 2a which contain light-generated radicals,inducing an increase ofχ_(MT)at room temperature.A detailed study of the dynamic magnetic property shows that the magnetization dynamics observed for 1 and la are dominated by Raman process,but Orbach and Raman processes are observed in 2 and 2a.The structural factors influencing the magnetic properties of this photomagnetic system are discussed.展开更多
Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simp...Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.展开更多
文摘Novel bioengineering functional organoboron polymers were synthesized by 1) amidolysis of poly(acrcylic acid) (PAA) with 2-aminoethyldiphenyl borinate (2-AEPB), 2) esterification of organoboron PAA polymer (PAA-B) with a-hydroxy-methoxypoly(ethylene oxide) (PEO) as a compatibilizer and 3) conjugation of organoboron PEO branches (PAA-B-PEO) with folic acid (FA) as a targeting agent. Structure and composition of the synthesized polymers were characterized by FTIR-ATR and 1H (13C) NMR spectroscopy, chemical and physical analysis methods. Anti-tumor activity of organoboron functional polymer and its complex with FA (PAA-B-PEO-F) against cancer and normal cells were evaluated by using different biochemical methods such as cytotoxicity, statistical, apoptotic and necrotic cell indexes, double staining and caspase-3 immune staining, light and fluorescence inverted microscope analyses. It was found that citotoxicity and apoptotic/necrotic effects of polymers significantly depend on the structure and composition of studied polymers, and increase the following raw: PAA << PAA-B < PAA-B-PEO < PAA-B-PEO-F. Among them, PAA-B-PEO-F complex at 400 mg mL–1 concentration as a therapeutic drug exhibits minimal toxicity toward the nor-mal cells, but influential for HeLa cancer cells.
基金This work is partly supported by the Russian Foundation of Fundamental Research Grant N 97-03-32682).
文摘The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal complexes, which are widelyused for solving many practical tasks. The nanosecond dynamics of macromolecules are ahighly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solvethe problems of studying IPC formation and stability and to investigate the interpolymerreactions of exchange and substitution. The investigation of changes in the rotational mo-bility of globular protein molecules as a whole makes it possible to determine the complexcomposition and its stability, and to control the course of polymer-protein conjugate forma-tion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determin-ing the equilibrium constants of the S-polymer complex formation was developed on thebasis of the study of polymer chains mobility. It is established that nanosecond dynamicsinfluences the course of chemical reactions in polymer chains. Moreover, the marked effectof the nanosecond dynamics is also revealed in the study of photophysical processes (theformation of excimers and energy migration of electron excitation) in polymers with pho-toactive groups. It was found that the efficiency of both processes increases with increasingthe mobility of side chains, the carriers of photoactive groups.
文摘In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.
基金supported by the National Natural Science Foundation of China(No.51803041)the University and Local Integration Development Project of Yantai,China(No.2022 XDRHXMXK08).
文摘Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.
基金financially supported by the National Natural Science Foundation of China(Nos.52233001,51927805,and 52173110)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD07)the Shanghai Rising-Star Program(No.22QA1401200)。
文摘Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金supported by the National Natural Science Foundation of China(Nos.32301259,32101228,32271527 and 32371536)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Nos.2022C02023 and 2023C02015)+1 种基金the Research Foundation of Talented Scholars of Zhejiang A&F University(No.2021LFR058)the Dean-ship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-177-01”.
文摘As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
文摘Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.
文摘Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions.
文摘We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),camphoric acid(H_(2)cpa)].In[Cd(dip)(cda)]·4H_(2)O}_(n)(1),the Cd^(2+)ions,acting as tetrahedral nodes,are linked by dipand cda^(2-)ligands with four Cd^(2+)ions into five-fold interpenetrating network array of topology of dia.In{[Cd(dip)(cpa)]·4H_(2)O}_(n)(2),the Cd^(2+)ions,acting as a 4-connector,are linked by cpa^(2-)and dip ligands into a 3D framework ofcds topology.In{[Ni(dia)_(2)Cl_(2)]·DMF}_(n)(3),the Ni^(2+)ion is linked by four dia ligands into a layer structure,and 1Dchannels of a cross-section of 1.35 nm×0.96 nm are formed.In{[Cd(dia)_(2)(H_(2)O)_(2)](NO_(3))_(2)·2DMSO}n(4),the dia ligandsconnected Cd^(2+)ions into a 2D layer,and 1D channels are formed between adjacent layers with a cross-section of0.87 nm×0.43 nm.In[Zn(dip)Cl_(2)]_(n)(5),the Zn^(2+)ion is linked by dip ligands into an infinite 1D chain.The infrared,thermal gravimetric,and fluorescent emission data were collected and analyzed for these coordination polymers.CCDC:2356055,1;2440075,2;2356057,3;2356057,4;2356059,5.
文摘Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.
文摘Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2.
基金supported by the National Natural Science Foundation of China(Nos.82402822,82360427,82372425,82072443,and 32200559)the Priority Union Foundation of Yunnan Provincial Science and Technology Department and Kunming Medical University(No.202301AY070001-164)+1 种基金the Natural Science Foundation of Sichuan Province(No.23NSFSC5880)the Central Government of Sichuan Province Guiding the Special Project of Local Science and Technology Development(No.2024ZYD0155).
文摘Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has prompted the exploration of innovative materials and technical solutions.Shape-memory polymers,as advanced intelligent materials,exhibit considerable potential in minimally invasive surgical applications.Herein,we developed a novel thermosetting shape-memory polymer,poly(L-lactic acid)-trimethylene carbonate-glycolic acid(PLLA-TMC-GA),for the fabrication of bioengineered scaffolds with body temperature-activated shape-memory functionality.We comprehensively evaluated the mechanical properties,thermal stability,shape-memory capabilities,biocompatibility,biodegradability,and 3 D printing performance of PLLA-TMC-GA terpolymers with various compositions.The results indicate that PLLA-TMC-GA exhibits exceptional shape-memory performance,adjustable material properties,favorable biocompatibility,and the potential for controlled biodegradation and reabsorption.The use of PLLA-TMC-GA as a biodegradable shape-memory polymer allows the reduction of implant volume,simplifies implantation,and enables on-demand activation at body temperature.These characteristics present new opportunities for the advancement of minimally invasive surgical techniques.
文摘Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovative materials,strengthened policy support,and maturing industrial chains,these polymers are demonstrating transformative potential in critical sectors,such as environmental protection,healthcare,and industrial manufacturing,promising for reshaping the future landscape of the plastics industry.
基金support from the Natural Science Fund for Colleges and Universities in Jiangsu Province(24KJB430029)the Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(NY224032,NY225006).
文摘Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Compared with oxide FEs,polymer FEs possess good flexible and shape adaptability,making them promising candidates for flexible electronics and biocompatible devices[4].
基金funded by the Russian Science Foundation(RSF),grantNo.24-23-00558,https://rscf.ru/en/project/24-23-00558/(accessed on 04 February 2025).
文摘The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.
基金Project supported by the National Natural Science Foundation of China(21971123,21931004,92156002)。
文摘The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymers[Er(CA)_(1.5)(bpy)(DMF)]_(n)(1)and[Er(CA)_(1.5)(phen)(DMF)]_(n)(2)(H_(2)CA=2,5-dichloro-3,6-dihydroxy-p-quinone,bpy=2,2'-bipyridine,phen=1,10-phenanthroline)were synthesized and fully characterized.By the irradiation of ultraviolet light,1 and 2 were converted to la and 2a which contain light-generated radicals,inducing an increase ofχ_(MT)at room temperature.A detailed study of the dynamic magnetic property shows that the magnetization dynamics observed for 1 and la are dominated by Raman process,but Orbach and Raman processes are observed in 2 and 2a.The structural factors influencing the magnetic properties of this photomagnetic system are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.52203135 and 52273206)Postdoctoral Fellowship Program of CPSF(No.GZC20230372)+4 种基金Huzhou Science and Technology Program Projects(No.2023GZ18)Zhejiang Postdoctoral Research Project(No.ZJ2023133)Science and Technology Cooperation Fund Program of Chengdu-Chinese Academy of ScienceHunan Provincial Natural Science Foundation(No.2021JJ10029)Huxiang High-level Talent Gathering Project(No.2022RC4039)。
文摘Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.