Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has pr...Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has prompted the exploration of innovative materials and technical solutions.Shape-memory polymers,as advanced intelligent materials,exhibit considerable potential in minimally invasive surgical applications.Herein,we developed a novel thermosetting shape-memory polymer,poly(L-lactic acid)-trimethylene carbonate-glycolic acid(PLLA-TMC-GA),for the fabrication of bioengineered scaffolds with body temperature-activated shape-memory functionality.We comprehensively evaluated the mechanical properties,thermal stability,shape-memory capabilities,biocompatibility,biodegradability,and 3 D printing performance of PLLA-TMC-GA terpolymers with various compositions.The results indicate that PLLA-TMC-GA exhibits exceptional shape-memory performance,adjustable material properties,favorable biocompatibility,and the potential for controlled biodegradation and reabsorption.The use of PLLA-TMC-GA as a biodegradable shape-memory polymer allows the reduction of implant volume,simplifies implantation,and enables on-demand activation at body temperature.These characteristics present new opportunities for the advancement of minimally invasive surgical techniques.展开更多
Development of polymers with underwater self-healing and antifouling properties is crucial,particularly in harsh marine environments.In this study,polydimethylsiloxane(PDMS)-based antifouling polymers with tunable sel...Development of polymers with underwater self-healing and antifouling properties is crucial,particularly in harsh marine environments.In this study,polydimethylsiloxane(PDMS)-based antifouling polymers with tunable self-healing capabilities in aqueous conditions were fabricated by incorporating amphiphilic segments and Fe^(3+)-catechol dynamic coordination crosslinking.The microphase formed within the PDMS matrix imparted static antifouling properties to the coatings.The mechanical properties of the damaged sample were restored at room temperature in an aqueous environment for 24 h,achieving a self-healing efficiency of almost 100%.The synthesized material exploited the dynamic coordination between Fe^(3+) and catechol to facilitate underwater self-healing.No bacterial adhesion was observed at the scratch site after the coating was repaired.This material enables the long-term antifouling and autonomous repair of marine vessels and sensors,thereby reducing maintenance costs.展开更多
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr...In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.展开更多
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni...Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an...Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.展开更多
Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovat...Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovative materials,strengthened policy support,and maturing industrial chains,these polymers are demonstrating transformative potential in critical sectors,such as environmental protection,healthcare,and industrial manufacturing,promising for reshaping the future landscape of the plastics industry.展开更多
Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Comp...Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Compared with oxide FEs,polymer FEs possess good flexible and shape adaptability,making them promising candidates for flexible electronics and biocompatible devices[4].展开更多
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic...The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.展开更多
The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymer...The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymers[Er(CA)_(1.5)(bpy)(DMF)]_(n)(1)and[Er(CA)_(1.5)(phen)(DMF)]_(n)(2)(H_(2)CA=2,5-dichloro-3,6-dihydroxy-p-quinone,bpy=2,2'-bipyridine,phen=1,10-phenanthroline)were synthesized and fully characterized.By the irradiation of ultraviolet light,1 and 2 were converted to la and 2a which contain light-generated radicals,inducing an increase ofχ_(MT)at room temperature.A detailed study of the dynamic magnetic property shows that the magnetization dynamics observed for 1 and la are dominated by Raman process,but Orbach and Raman processes are observed in 2 and 2a.The structural factors influencing the magnetic properties of this photomagnetic system are discussed.展开更多
Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simp...Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.展开更多
Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approa...Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl,amino,carboxyl,and hydroxyl functional groups using reversible addition-fragmentation chain transfer(RAFT)polymerization.The resulting polymers,designed with comparable molecular weights(M_(n):10–20 kDa)and narrow dispersities(PDI<1.3),mimic the diverse surface chemistry of amyloid-like proteins,enabling systematic investigation of their adhesive properties.The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy(AFM)with a colloidal probe.Remarkably copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers,a trend corroborated by macroscopic shear strength and stability tests.These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules,offering insights into protein adhesion mechanisms,and guiding polymer-based interfacial modifications.展开更多
Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conve...Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction.展开更多
The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic...The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic study on isostructural 2D coordination polymers(CPs)based on 1,10-ferrocenediyl-bis(H-phosphinic)acid,with cobalt,manganese,and cadmium metals as electrocatalysts for OER.These polymers were synthesized via a facile solution reaction,yielding crystalline materials with excellent structural integrity.The electrocatalytic performance of CPs composites,prepared with carbon and phosphonium ionic liquid,was evaluated in 0.1 M KOH using a three-electrode system.Notably,the Co-and Cd-based CPs demonstrated exceptional OER activity,achieving an overpotential as low as 236–255 mV at 10 mA cm^(-2),surpassing those of many previously reported CP-based OER catalysts.Furthermore,these materials exhibited high stability over prolonged electrolysis,maintaining their activity without significant degradation.This work not only introduces a new class of ferrocenyl phosphinatebased CPs as highly active and durable OER catalysts but also provides valuable insights into their structureactivity relationships,paving the way for future advancements in electrocatalysis.展开更多
Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this ...Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this study,novel poly(ε-caprolactone)(PCL)-poly(2-vinyl)ethylene glycol(PVEG)copolymers bearing multi-pendant vinyl groups is synthesized by branched-selective allylic etherification polymerization of vinylethylene carbonate(VEC)with linear and tetra-arm PCLs under a synergistic catalysis of palladium complex and boron reagent.Facile thiol-ene photo-click reaction of PCL-PVEG copolymers with multifunctional thiols can rapidly access a serious crosslinked SMPs with high shape memory performance.The thermal properties,mechanical properties and response temperature of the obtained SMPs are tunable by the variation of PCL prepolymers,vinyl contents and functionality of thiols.Moreover,high elastic modulus in the rubbery plateau region can be maintained effectively owing to high-density topological networks of the PCL materials.In addition,the utility of the present SMPs is further demonstrated by the post-functionalization via thiol-ene photo-click chemistry.展开更多
Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electroni...Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability.展开更多
The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular ...The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular polymers Se-MTpy(M=Co or Ni),and constructed their composites with single-walled carbon nanotubes(CNTs)via electrostatic attraction andπ-πinteractions for efficient and stable photocatalytic hydrogen evolution.In the photocatalytic system,the cationic Se-MTpy as host and anionic CNTs as vip are assembled into a binary composite,which exhibits superior photocatalytic activity under visible light irradiation(>420 nm).The optimized CNT@Se-CoTpy composite,containing 1.2 wt%metal loading,achieves 7 times higher hydrogen evolution rate(2.47 mmol g^(-1)h^(-1))than bare Se-CoTpy(0.35 mmol g^(-1)h^(-1)).This is attributed to the constructive formation of junctions between polymer and CNTs,facilitating interfacial charge transfer and transport for efficient proton reduction.The composite system also shows high photostability after continuous irradiation for~30 h.The combination of experimental and theoretical analysis demonstrates the higher activity for reducing H_(2)O to H_(2)of Se-CoTpy than Se-NiTpy.The feasible interfacial architecture proposed in this study represents an effective approach to achieve high photocatalytic performance.展开更多
This study presents the microwave-assisted synthesis and characterization of a series of heterometal lic coordination polymers(HMCPs)with a 4-methyl-2,6-di[(1H-1,2,4-triazol-1-yl)]phenoxo ligand with varying Eu^(Ⅲ)/T...This study presents the microwave-assisted synthesis and characterization of a series of heterometal lic coordination polymers(HMCPs)with a 4-methyl-2,6-di[(1H-1,2,4-triazol-1-yl)]phenoxo ligand with varying Eu^(Ⅲ)/Tb^(Ⅲ)ratios.Single crystal X-ray diffraction reveals a double-chain structure bridged by triazolyl groups.Powder X-ray diffraction confirms the isostructural nature of the synthesized HMCPs.The photophysical properties depend on lanthanide ion concentration and excitation wavelength,leading to a color shift from green to blue as the proportion of Tb^(Ⅲ)decreases and Eu^(Ⅲ)increases.White light generation is achieved in the 8/2 Eu^(Ⅲ)/Tb^(Ⅲ)HMCP(CIE:0.293,0.326)under 335 nm excitation.The study suggests energy transfer from Tb^(Ⅲ)to Eu^(Ⅲ),but both experimental and theoretical calculations indicate that this transfer is orders of magnitude lower than the sensitization through ligand states.展开更多
Molecularly imprinted polymers(MIPs)are a kind of synthetic receptors possessing wide application prospects in proteins recognition.However,there are still great challenges in proteins imprinting due to their large si...Molecularly imprinted polymers(MIPs)are a kind of synthetic receptors possessing wide application prospects in proteins recognition.However,there are still great challenges in proteins imprinting due to their large size and easy conformation change.In this study,we explored epitope-oriented MIP based on host-vip interaction(hg-MIP)and constructed a novel hg-MIP-SERS(surface-enhanced Raman scatting)approach for efficiently recognizing the terminal epitopes of neuron-specific enolase(NSE),a well-known disease biomarker for small cell lung cancer,neuroblstom,and Alzheimer's disease.The C-and N-terminal epitopes of NSE were modified with 4-(phenylazo)benzoic acid,then they were used as the templates and immobilized onβ-cyclodextrin-functionalized substrates.The imprinted layer was formed by polymerization of various functional monomers.Combined with SERS detection,an antibody-free sandwich assay based on hg-MIP was successfully used to detect the concentration of NSE in human serums,with the advantages of simple operation,small sample volume(5μL),wide linear range(1–10^(4)ng/m L)and a limit of detection as low as 0.01 ng/m L.The developed epitope-oriented hg-MIP-SERS approach can also be extended to other proteins,expanding the imprinting method of proteins,and has a broad development space in the field of protein separation and detection.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82402822,82360427,82372425,82072443,and 32200559)the Priority Union Foundation of Yunnan Provincial Science and Technology Department and Kunming Medical University(No.202301AY070001-164)+1 种基金the Natural Science Foundation of Sichuan Province(No.23NSFSC5880)the Central Government of Sichuan Province Guiding the Special Project of Local Science and Technology Development(No.2024ZYD0155).
文摘Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has prompted the exploration of innovative materials and technical solutions.Shape-memory polymers,as advanced intelligent materials,exhibit considerable potential in minimally invasive surgical applications.Herein,we developed a novel thermosetting shape-memory polymer,poly(L-lactic acid)-trimethylene carbonate-glycolic acid(PLLA-TMC-GA),for the fabrication of bioengineered scaffolds with body temperature-activated shape-memory functionality.We comprehensively evaluated the mechanical properties,thermal stability,shape-memory capabilities,biocompatibility,biodegradability,and 3 D printing performance of PLLA-TMC-GA terpolymers with various compositions.The results indicate that PLLA-TMC-GA exhibits exceptional shape-memory performance,adjustable material properties,favorable biocompatibility,and the potential for controlled biodegradation and reabsorption.The use of PLLA-TMC-GA as a biodegradable shape-memory polymer allows the reduction of implant volume,simplifies implantation,and enables on-demand activation at body temperature.These characteristics present new opportunities for the advancement of minimally invasive surgical techniques.
基金supported by Beijing Municipal Natural Science Foundation(No.2242053)National Natural Science Foundation of China(No.22275012).
文摘Development of polymers with underwater self-healing and antifouling properties is crucial,particularly in harsh marine environments.In this study,polydimethylsiloxane(PDMS)-based antifouling polymers with tunable self-healing capabilities in aqueous conditions were fabricated by incorporating amphiphilic segments and Fe^(3+)-catechol dynamic coordination crosslinking.The microphase formed within the PDMS matrix imparted static antifouling properties to the coatings.The mechanical properties of the damaged sample were restored at room temperature in an aqueous environment for 24 h,achieving a self-healing efficiency of almost 100%.The synthesized material exploited the dynamic coordination between Fe^(3+) and catechol to facilitate underwater self-healing.No bacterial adhesion was observed at the scratch site after the coating was repaired.This material enables the long-term antifouling and autonomous repair of marine vessels and sensors,thereby reducing maintenance costs.
文摘In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.
基金supported by the National Natural Science Foundation of China(No.51803041)the University and Local Integration Development Project of Yantai,China(No.2022 XDRHXMXK08).
文摘Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
文摘Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2.
文摘Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovative materials,strengthened policy support,and maturing industrial chains,these polymers are demonstrating transformative potential in critical sectors,such as environmental protection,healthcare,and industrial manufacturing,promising for reshaping the future landscape of the plastics industry.
基金support from the Natural Science Fund for Colleges and Universities in Jiangsu Province(24KJB430029)the Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(NY224032,NY225006).
文摘Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Compared with oxide FEs,polymer FEs possess good flexible and shape adaptability,making them promising candidates for flexible electronics and biocompatible devices[4].
基金funded by the Russian Science Foundation(RSF),grantNo.24-23-00558,https://rscf.ru/en/project/24-23-00558/(accessed on 04 February 2025).
文摘The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies.
基金Project supported by the National Natural Science Foundation of China(21971123,21931004,92156002)。
文摘The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymers[Er(CA)_(1.5)(bpy)(DMF)]_(n)(1)and[Er(CA)_(1.5)(phen)(DMF)]_(n)(2)(H_(2)CA=2,5-dichloro-3,6-dihydroxy-p-quinone,bpy=2,2'-bipyridine,phen=1,10-phenanthroline)were synthesized and fully characterized.By the irradiation of ultraviolet light,1 and 2 were converted to la and 2a which contain light-generated radicals,inducing an increase ofχ_(MT)at room temperature.A detailed study of the dynamic magnetic property shows that the magnetization dynamics observed for 1 and la are dominated by Raman process,but Orbach and Raman processes are observed in 2 and 2a.The structural factors influencing the magnetic properties of this photomagnetic system are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.52203135 and 52273206)Postdoctoral Fellowship Program of CPSF(No.GZC20230372)+4 种基金Huzhou Science and Technology Program Projects(No.2023GZ18)Zhejiang Postdoctoral Research Project(No.ZJ2023133)Science and Technology Cooperation Fund Program of Chengdu-Chinese Academy of ScienceHunan Provincial Natural Science Foundation(No.2021JJ10029)Huxiang High-level Talent Gathering Project(No.2022RC4039)。
文摘Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions.
基金supported by the National Natural Science Foundation of China(Nos.22375122 and 22105065)the National Science Fund for Distinguished Young Scholars(No.52225301)+3 种基金the National Key R&D Program of China(Nos.2020YFA0710400 and 2020YFA0710402)the 111 Project(No.B14041)Fundamental Research Funds for Central Universities(No.GK202304040)Open Project of the State Key Laboratory of Supramolecular Structure and Materials(No.sklssm2024023)。
文摘Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl,amino,carboxyl,and hydroxyl functional groups using reversible addition-fragmentation chain transfer(RAFT)polymerization.The resulting polymers,designed with comparable molecular weights(M_(n):10–20 kDa)and narrow dispersities(PDI<1.3),mimic the diverse surface chemistry of amyloid-like proteins,enabling systematic investigation of their adhesive properties.The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy(AFM)with a colloidal probe.Remarkably copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers,a trend corroborated by macroscopic shear strength and stability tests.These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules,offering insights into protein adhesion mechanisms,and guiding polymer-based interfacial modifications.
基金National Natural Science Foundation of China(No.22005154)for financial support。
文摘Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction.
文摘The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic study on isostructural 2D coordination polymers(CPs)based on 1,10-ferrocenediyl-bis(H-phosphinic)acid,with cobalt,manganese,and cadmium metals as electrocatalysts for OER.These polymers were synthesized via a facile solution reaction,yielding crystalline materials with excellent structural integrity.The electrocatalytic performance of CPs composites,prepared with carbon and phosphonium ionic liquid,was evaluated in 0.1 M KOH using a three-electrode system.Notably,the Co-and Cd-based CPs demonstrated exceptional OER activity,achieving an overpotential as low as 236–255 mV at 10 mA cm^(-2),surpassing those of many previously reported CP-based OER catalysts.Furthermore,these materials exhibited high stability over prolonged electrolysis,maintaining their activity without significant degradation.This work not only introduces a new class of ferrocenyl phosphinatebased CPs as highly active and durable OER catalysts but also provides valuable insights into their structureactivity relationships,paving the way for future advancements in electrocatalysis.
基金financially supported by the National Natural Science Foundation of China(No.22171182)Sichuan Tianfu Emei Plan.
文摘Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this study,novel poly(ε-caprolactone)(PCL)-poly(2-vinyl)ethylene glycol(PVEG)copolymers bearing multi-pendant vinyl groups is synthesized by branched-selective allylic etherification polymerization of vinylethylene carbonate(VEC)with linear and tetra-arm PCLs under a synergistic catalysis of palladium complex and boron reagent.Facile thiol-ene photo-click reaction of PCL-PVEG copolymers with multifunctional thiols can rapidly access a serious crosslinked SMPs with high shape memory performance.The thermal properties,mechanical properties and response temperature of the obtained SMPs are tunable by the variation of PCL prepolymers,vinyl contents and functionality of thiols.Moreover,high elastic modulus in the rubbery plateau region can be maintained effectively owing to high-density topological networks of the PCL materials.In addition,the utility of the present SMPs is further demonstrated by the post-functionalization via thiol-ene photo-click chemistry.
基金Khalifa University,Abu Dhabi,for the generous support of this researchthe financial support from the Khalifa University Research&Innovation Grant(RIG-2023-005)。
文摘Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability.
基金supported by the RGC Senior Research Fellowship Scheme(Grant No.SRFS2021-5S01)the Hong Kong Research Grants Council(Grant No.PolyU 15307321)+2 种基金Research Institute for Smart Energy(CDAQ),Research Centre for Nanoscience and Nanotechnology(CE2H),Research Centre for Carbon-Strategic Catalysis(CE2L)Miss Clarea Au for the Endowed Professorship in Energy(Grant No.847S)National Natural Science Foundation of China(Grant No.62205277).
文摘The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular polymers Se-MTpy(M=Co or Ni),and constructed their composites with single-walled carbon nanotubes(CNTs)via electrostatic attraction andπ-πinteractions for efficient and stable photocatalytic hydrogen evolution.In the photocatalytic system,the cationic Se-MTpy as host and anionic CNTs as vip are assembled into a binary composite,which exhibits superior photocatalytic activity under visible light irradiation(>420 nm).The optimized CNT@Se-CoTpy composite,containing 1.2 wt%metal loading,achieves 7 times higher hydrogen evolution rate(2.47 mmol g^(-1)h^(-1))than bare Se-CoTpy(0.35 mmol g^(-1)h^(-1)).This is attributed to the constructive formation of junctions between polymer and CNTs,facilitating interfacial charge transfer and transport for efficient proton reduction.The composite system also shows high photostability after continuous irradiation for~30 h.The combination of experimental and theoretical analysis demonstrates the higher activity for reducing H_(2)O to H_(2)of Se-CoTpy than Se-NiTpy.The feasible interfacial architecture proposed in this study represents an effective approach to achieve high photocatalytic performance.
基金Project supported by Fondo Nacional de Desarrollo Científico y Tecnologico,FONDECYT(1200033)the National Doctoral Scholarship(21192195)+2 种基金Chile,Conselho Nacional de Desenvolvimento Científico e Tecnologico(CNPq,427164/2018-4 and 310307/2021-0)Funda?āo de AmparoàPesquisa do Estado de Goiás(FAPEG),Brazil,developed within the scope of the project CICECO-Aveiro Institute of Materials(UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020)LogicALL(PTDC/CTMCTM/0340/2021)financed through the FCT-Foundation for Science and Technology/Ministry of Education(PIDDAC-Central Government Investment and Development Expenditure Program),Portugal。
文摘This study presents the microwave-assisted synthesis and characterization of a series of heterometal lic coordination polymers(HMCPs)with a 4-methyl-2,6-di[(1H-1,2,4-triazol-1-yl)]phenoxo ligand with varying Eu^(Ⅲ)/Tb^(Ⅲ)ratios.Single crystal X-ray diffraction reveals a double-chain structure bridged by triazolyl groups.Powder X-ray diffraction confirms the isostructural nature of the synthesized HMCPs.The photophysical properties depend on lanthanide ion concentration and excitation wavelength,leading to a color shift from green to blue as the proportion of Tb^(Ⅲ)decreases and Eu^(Ⅲ)increases.White light generation is achieved in the 8/2 Eu^(Ⅲ)/Tb^(Ⅲ)HMCP(CIE:0.293,0.326)under 335 nm excitation.The study suggests energy transfer from Tb^(Ⅲ)to Eu^(Ⅲ),but both experimental and theoretical calculations indicate that this transfer is orders of magnitude lower than the sensitization through ligand states.
基金supported by Open Project of State Key Laboratory of Supramolecular Structure and Materials,Jilin University,China(No.sklssm2024018)。
文摘Molecularly imprinted polymers(MIPs)are a kind of synthetic receptors possessing wide application prospects in proteins recognition.However,there are still great challenges in proteins imprinting due to their large size and easy conformation change.In this study,we explored epitope-oriented MIP based on host-vip interaction(hg-MIP)and constructed a novel hg-MIP-SERS(surface-enhanced Raman scatting)approach for efficiently recognizing the terminal epitopes of neuron-specific enolase(NSE),a well-known disease biomarker for small cell lung cancer,neuroblstom,and Alzheimer's disease.The C-and N-terminal epitopes of NSE were modified with 4-(phenylazo)benzoic acid,then they were used as the templates and immobilized onβ-cyclodextrin-functionalized substrates.The imprinted layer was formed by polymerization of various functional monomers.Combined with SERS detection,an antibody-free sandwich assay based on hg-MIP was successfully used to detect the concentration of NSE in human serums,with the advantages of simple operation,small sample volume(5μL),wide linear range(1–10^(4)ng/m L)and a limit of detection as low as 0.01 ng/m L.The developed epitope-oriented hg-MIP-SERS approach can also be extended to other proteins,expanding the imprinting method of proteins,and has a broad development space in the field of protein separation and detection.