期刊文献+
共找到6,468篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of the 3 D printable temperature-responsive shape-memory PLTG terpolymers for minimally invasive surgery
1
作者 Xulin Hu Jun Wang +11 位作者 Shuhao Yang Jun Deng Wanyue Feng Haoming Wu Dongdong Han Leilei Qin Jianye Yang Zhengguang Pu Xin Yong Yanlin Li Shuai Li Ning Hu 《Bio-Design and Manufacturing》 2025年第5期709-723,I0001-I0013,共28页
Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has pr... Three-dimensional(3 D)printing has revolutionized the design and production of customized scaffolds,but the minimally invasive implantation of 3 D-printed structures into the human body remains challenging.This has prompted the exploration of innovative materials and technical solutions.Shape-memory polymers,as advanced intelligent materials,exhibit considerable potential in minimally invasive surgical applications.Herein,we developed a novel thermosetting shape-memory polymer,poly(L-lactic acid)-trimethylene carbonate-glycolic acid(PLLA-TMC-GA),for the fabrication of bioengineered scaffolds with body temperature-activated shape-memory functionality.We comprehensively evaluated the mechanical properties,thermal stability,shape-memory capabilities,biocompatibility,biodegradability,and 3 D printing performance of PLLA-TMC-GA terpolymers with various compositions.The results indicate that PLLA-TMC-GA exhibits exceptional shape-memory performance,adjustable material properties,favorable biocompatibility,and the potential for controlled biodegradation and reabsorption.The use of PLLA-TMC-GA as a biodegradable shape-memory polymer allows the reduction of implant volume,simplifies implantation,and enables on-demand activation at body temperature.These characteristics present new opportunities for the advancement of minimally invasive surgical techniques. 展开更多
关键词 Biodegradable polymers Shape-memory polymers 3 D printing technology BIOCOMPATIBILITY Tissue engineering applications
在线阅读 下载PDF
Polydimethylsiloxane-based Antifouling Polymers with Tunable Self-healing Properties in Aqueous Environments
2
作者 Lu-Lu Si Jing-Zhi Yang +3 位作者 An-Nan Kong Yan Song Da-Wei Zhang Guo-Liang Li 《Chinese Journal of Polymer Science》 2025年第9期1629-1637,I0011,共10页
Development of polymers with underwater self-healing and antifouling properties is crucial,particularly in harsh marine environments.In this study,polydimethylsiloxane(PDMS)-based antifouling polymers with tunable sel... Development of polymers with underwater self-healing and antifouling properties is crucial,particularly in harsh marine environments.In this study,polydimethylsiloxane(PDMS)-based antifouling polymers with tunable self-healing capabilities in aqueous conditions were fabricated by incorporating amphiphilic segments and Fe^(3+)-catechol dynamic coordination crosslinking.The microphase formed within the PDMS matrix imparted static antifouling properties to the coatings.The mechanical properties of the damaged sample were restored at room temperature in an aqueous environment for 24 h,achieving a self-healing efficiency of almost 100%.The synthesized material exploited the dynamic coordination between Fe^(3+) and catechol to facilitate underwater self-healing.No bacterial adhesion was observed at the scratch site after the coating was repaired.This material enables the long-term antifouling and autonomous repair of marine vessels and sensors,thereby reducing maintenance costs. 展开更多
关键词 Antifouling polymers SELF-HEALING Polydimethylsiloxane(PDMS)-based polymers
原文传递
Innovative Approaches in Water Decontamination: A Critical Analysis of Biomaterials, Nanocomposites, and Stimuli-Responsive Polymers for Effective Solutions 被引量:1
3
作者 Rakesh Namdeti Gaddala Babu Rao +5 位作者 Nageswara Rao Lakkimsetty Muayad Abdullah Ahmed Qatan Doaa Salim Musallam Samhan Al-Kathiri Lakhayar Amer Al Amri Noor Mohammed Said Qahoor Arlene Abuda Joaquin 《Journal of Environmental & Earth Sciences》 2025年第1期92-102,共11页
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr... In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health. 展开更多
关键词 Smart Materials Water Purification NANOCOMPOSITES Stimuli-Responsive polymers Sustainable Water Treatment
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
4
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
5
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
Merging polymers of intrinsic microporosity and porous carbon-based zinc oxide composites in novel mixed matrix membranes for efficient gas separation
6
作者 Muning Chen Jiemei Zhou +7 位作者 Jing Ma Weigang Zheng Guanying Dong Xin Li Zhihong Tian Yatao Zhang Jing Wang Yong Wang 《Green Energy & Environment》 SCIE EI CAS 2025年第1期203-213,共11页
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim... Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials. 展开更多
关键词 Mixed matrix membranes polymers of intrinsic microporosity CO_(2)separation Porous carbon materials
在线阅读 下载PDF
Structure and magnetic properties of Mn(Ⅱ)coordination polymers regulated by N-auxiliary ligands
7
作者 LIU Xiaxia MA Xiaofang +2 位作者 GUO Luxia HAN Xianda FENG Sisi 《无机化学学报》 北大核心 2025年第3期587-596,共10页
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an... Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2. 展开更多
关键词 coordination polymers crystal structures binuclear Mnunit tetranuclear Mnunit MAGNETISM
在线阅读 下载PDF
Special Topic:Depolymerizable Polymers
8
作者 Yao-Hua Tao Zhi-Bo Li 《Chinese Journal of Polymer Science》 2025年第6期875-875,共1页
Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovat... Driven by the dual imperatives of global plastic pollution control and carbon neutrality,research on depolymerizable polymers has become a cutting-edge focus in polymer science.With the continuous emergence of innovative materials,strengthened policy support,and maturing industrial chains,these polymers are demonstrating transformative potential in critical sectors,such as environmental protection,healthcare,and industrial manufacturing,promising for reshaping the future landscape of the plastics industry. 展开更多
关键词 depolymerizable polymers global plastic pollution control carbon neutralityresearch policy support carbon neutrality polymer science industrial chains innovative materials
原文传递
Fluorine-free polymers set a new benchmark for ferroelectrics
9
作者 Wentao Yao Mingli Liang +1 位作者 Sasa Wang Qiang Zhao 《Journal of Semiconductors》 2025年第10期2-4,共3页
Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Comp... Ferroelectrics(FEs)have shown great potential in sensors,actuators,and electrocaloric cooling due to their direct cross-couplings between electric polarization and mechanical,thermal,and dielectric properties[1−3]Compared with oxide FEs,polymer FEs possess good flexible and shape adaptability,making them promising candidates for flexible electronics and biocompatible devices[4]. 展开更多
关键词 biocompatible devices FERROELECTRICS electrocaloric cooling sensors flexible electronics actuators electric polarization fluorine free polymers
在线阅读 下载PDF
Ionic Electroactive Polymers as Renewable Materials and Their Actuators:A Review
10
作者 Tarek Dayyoub Mikhail Zadorozhnyy +6 位作者 Dmitriy G.Ladokhin Emil Askerov Ksenia V.Filippova Lidiia D.Iudina Elizaveta Iushina Dmitry V.Telyshev Aleksey Maksimkin 《Journal of Renewable Materials》 2025年第7期1267-1292,共26页
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic... The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies. 展开更多
关键词 Electroactive polymers renewable materials actuators artificial muscles HYDROGELS ionic polymermetal composites
暂未订购
Influence of chelating ligands on photomagnetic properties of two erbium(Ⅲ)coordination polymers
11
作者 Xiaoshuang Gou Zhonghang Chen +5 位作者 Jialong Jiang Ning Liu Wenlong Lan Yuewei Wu Peng Cheng Wei Shi 《Journal of Rare Earths》 2025年第3期552-555,I0005,共5页
The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymer... The magnetization dynamics of lanthanide coordination compounds are fundamentals governing their potential applications such as information storage or molecular switches.Herein,two two-dimensional coordination polymers[Er(CA)_(1.5)(bpy)(DMF)]_(n)(1)and[Er(CA)_(1.5)(phen)(DMF)]_(n)(2)(H_(2)CA=2,5-dichloro-3,6-dihydroxy-p-quinone,bpy=2,2'-bipyridine,phen=1,10-phenanthroline)were synthesized and fully characterized.By the irradiation of ultraviolet light,1 and 2 were converted to la and 2a which contain light-generated radicals,inducing an increase ofχ_(MT)at room temperature.A detailed study of the dynamic magnetic property shows that the magnetization dynamics observed for 1 and la are dominated by Raman process,but Orbach and Raman processes are observed in 2 and 2a.The structural factors influencing the magnetic properties of this photomagnetic system are discussed. 展开更多
关键词 Coordination polymers LANTHANIDE Photomagnetic properties Magnetization dynamics Rare earths
原文传递
Multi-cyclic Swelling for Self-regulated Growth of Covalently Crosslinked Polymers
12
作者 De-Fu Zhu Hong Wang +2 位作者 Jian Chen Xin-Hong Xiong Jia-Xi Cui 《Chinese Journal of Polymer Science》 2025年第3期509-516,共8页
Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simp... Organisms are capable of self-growth through the integration of the nutrients provided by the external environment.This process slows down when they grow.In this study,we mimicked this self-regulated growth via a simple swelling-polymerization strategy in which the stretching polymer chains in the original networks provide entropic elasticity to restrict growth in high growth cycles.Using typical covalently crosslinked polymers,such as acrylamide-based hydrogels and HBA-based elastomers,as examples,we demonstrate that the crosslinked polymers can absorb polymerizable compounds through a swelling-polymerization process to expand their sizes,but the growth extent becomes smaller with increasing growth cycle until reaching a plateau.In addition to their size,these materials become stiffer and exhibit less swelling ability in solvents.Our work not only provides a new growing mode to tune the properties of crosslinked polymers but also discloses the underlying mechanism of crosslinked polymers in multi-cyclic swelling conditions. 展开更多
关键词 Crosslinked polymers SWELLING Self-growing Mechanical property
原文传递
Synergistic Functional Group Interactions for Stable Interfacial Adhesion:Insights from Amyloid-inspired Polymers
13
作者 Jin-Wei Bai Wei Liu +4 位作者 Bin Wen Zhong-Li Lei Chen Li Hao Ren Peng Yang 《Chinese Journal of Polymer Science》 2025年第7期1096-1104,共9页
Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approa... Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl,amino,carboxyl,and hydroxyl functional groups using reversible addition-fragmentation chain transfer(RAFT)polymerization.The resulting polymers,designed with comparable molecular weights(M_(n):10–20 kDa)and narrow dispersities(PDI<1.3),mimic the diverse surface chemistry of amyloid-like proteins,enabling systematic investigation of their adhesive properties.The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy(AFM)with a colloidal probe.Remarkably copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers,a trend corroborated by macroscopic shear strength and stability tests.These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules,offering insights into protein adhesion mechanisms,and guiding polymer-based interfacial modifications. 展开更多
关键词 Protein-mimetic polymers AMYLOID Adhesion mechanism Surface functional group Synergistic effect
原文传递
Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide
14
作者 Wei-Jia Wang Kaihong Chen 《Chinese Chemical Letters》 2025年第1期201-213,共13页
Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conve... Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction. 展开更多
关键词 Carbon dioxide reduction PHOTOCATALYSIS Porous polymers Well-defined catalytic sites Molecular level
原文传递
2D coordination polymers of transition metals as catalysts for oxygen evolution reaction
15
作者 Mikhail N.Khrizanforov Anastasiia P.Samorodnova +5 位作者 Ilya A.Bezkishko Radis R.Gainullin Kirill V.Kholin Aidar T.Gubaidullin Ruslan P.Shekurov Vasili A.Miluykov 《Materials Reports(Energy)》 2025年第2期77-85,I0002,共10页
The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic... The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic study on isostructural 2D coordination polymers(CPs)based on 1,10-ferrocenediyl-bis(H-phosphinic)acid,with cobalt,manganese,and cadmium metals as electrocatalysts for OER.These polymers were synthesized via a facile solution reaction,yielding crystalline materials with excellent structural integrity.The electrocatalytic performance of CPs composites,prepared with carbon and phosphonium ionic liquid,was evaluated in 0.1 M KOH using a three-electrode system.Notably,the Co-and Cd-based CPs demonstrated exceptional OER activity,achieving an overpotential as low as 236–255 mV at 10 mA cm^(-2),surpassing those of many previously reported CP-based OER catalysts.Furthermore,these materials exhibited high stability over prolonged electrolysis,maintaining their activity without significant degradation.This work not only introduces a new class of ferrocenyl phosphinatebased CPs as highly active and durable OER catalysts but also provides valuable insights into their structureactivity relationships,paving the way for future advancements in electrocatalysis. 展开更多
关键词 Oxygen evolution reaction 2D coordination polymers Ferrocenyl phosphinate ligands ELECTROCATALYSIS Water splitting Surface morphology OVERPOTENTIAL Catalytic stability
在线阅读 下载PDF
Tunable Thermo-Responsive Shape Memory Materials Enabled by Poly(ε-caprolactone)-Poly(2-vinyl)ethylene Glycol Copolymers via Facile Thiol-Ene Photo-Crosslink
16
作者 Ming-Hang Wang Fan Yang Yong-Jian Zhang 《Chinese Journal of Polymer Science》 2025年第2期278-288,共11页
Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this ... Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this study,novel poly(ε-caprolactone)(PCL)-poly(2-vinyl)ethylene glycol(PVEG)copolymers bearing multi-pendant vinyl groups is synthesized by branched-selective allylic etherification polymerization of vinylethylene carbonate(VEC)with linear and tetra-arm PCLs under a synergistic catalysis of palladium complex and boron reagent.Facile thiol-ene photo-click reaction of PCL-PVEG copolymers with multifunctional thiols can rapidly access a serious crosslinked SMPs with high shape memory performance.The thermal properties,mechanical properties and response temperature of the obtained SMPs are tunable by the variation of PCL prepolymers,vinyl contents and functionality of thiols.Moreover,high elastic modulus in the rubbery plateau region can be maintained effectively owing to high-density topological networks of the PCL materials.In addition,the utility of the present SMPs is further demonstrated by the post-functionalization via thiol-ene photo-click chemistry. 展开更多
关键词 Shape memory polymers POLYCAPROLACTONE Thiol-ene photo-crosslink Controlled crosslinking density Tunable response temperature
原文传递
Evolving Role of Conjugated Polymers in Nanoelectronics and Photonics
17
作者 Amaan Chougle Ayman Rezk +3 位作者 Syed Usama Bin Afzal Abdul Khayum Mohammed Dinesh Shetty Ammar Nayfeh 《Nano-Micro Letters》 2025年第10期76-105,共30页
Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electroni... Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability. 展开更多
关键词 Conjugated polymers Molecular engineering Organic photonics Organic electronics
在线阅读 下载PDF
Electrostatic Attraction-Driven Assembly of Non-Noble Metallo-Supramolecular Polymers With Single-Walled Carbon Nanotubes for Boosting Photocatalytic Hydrogen Evolution
18
作者 Yanyan Qin Chen Zhang +2 位作者 Yidi Wang Pengfei She Wai-Yeung Wong 《Carbon Energy》 2025年第6期110-119,共10页
The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular ... The search for photoactive materials that are able to efficiently produce solar fuels is a growing research field to tackle the current energy crisis.Herein,we have prepared two ionic non-noble metallo-supramolecular polymers Se-MTpy(M=Co or Ni),and constructed their composites with single-walled carbon nanotubes(CNTs)via electrostatic attraction andπ-πinteractions for efficient and stable photocatalytic hydrogen evolution.In the photocatalytic system,the cationic Se-MTpy as host and anionic CNTs as vip are assembled into a binary composite,which exhibits superior photocatalytic activity under visible light irradiation(>420 nm).The optimized CNT@Se-CoTpy composite,containing 1.2 wt%metal loading,achieves 7 times higher hydrogen evolution rate(2.47 mmol g^(-1)h^(-1))than bare Se-CoTpy(0.35 mmol g^(-1)h^(-1)).This is attributed to the constructive formation of junctions between polymer and CNTs,facilitating interfacial charge transfer and transport for efficient proton reduction.The composite system also shows high photostability after continuous irradiation for~30 h.The combination of experimental and theoretical analysis demonstrates the higher activity for reducing H_(2)O to H_(2)of Se-CoTpy than Se-NiTpy.The feasible interfacial architecture proposed in this study represents an effective approach to achieve high photocatalytic performance. 展开更多
关键词 electrostatic attraction hybrid heterojunction metallo-supramolecular polymers photocatalytic hydrogen evolution single-walled carbon nanotubes
在线阅读 下载PDF
Trichromatic color tuning strategy for emission of heterometallic Eu^(Ⅲ)/Tb^(Ⅲ)coordination polymers with triazolyl-substituted 4-methyl-phenoxo ligand
19
作者 Juliana Perez-Obando Jorge Manzur +5 位作者 Pablo Fuentealba Jeannette Morales Andrés Vega Ricardo Costa de Santana Albano N.Carneiro Neto Evgenia Spodine 《Journal of Rare Earths》 2025年第7期1373-1381,共9页
This study presents the microwave-assisted synthesis and characterization of a series of heterometal lic coordination polymers(HMCPs)with a 4-methyl-2,6-di[(1H-1,2,4-triazol-1-yl)]phenoxo ligand with varying Eu^(Ⅲ)/T... This study presents the microwave-assisted synthesis and characterization of a series of heterometal lic coordination polymers(HMCPs)with a 4-methyl-2,6-di[(1H-1,2,4-triazol-1-yl)]phenoxo ligand with varying Eu^(Ⅲ)/Tb^(Ⅲ)ratios.Single crystal X-ray diffraction reveals a double-chain structure bridged by triazolyl groups.Powder X-ray diffraction confirms the isostructural nature of the synthesized HMCPs.The photophysical properties depend on lanthanide ion concentration and excitation wavelength,leading to a color shift from green to blue as the proportion of Tb^(Ⅲ)decreases and Eu^(Ⅲ)increases.White light generation is achieved in the 8/2 Eu^(Ⅲ)/Tb^(Ⅲ)HMCP(CIE:0.293,0.326)under 335 nm excitation.The study suggests energy transfer from Tb^(Ⅲ)to Eu^(Ⅲ),but both experimental and theoretical calculations indicate that this transfer is orders of magnitude lower than the sensitization through ligand states. 展开更多
关键词 Europium(Ⅲ) Terbium(Ⅲ) Heterometallic coordination polymers Trichromatic strategy Rare earths
原文传递
Design of host-vip interaction based molecularly imprinted polymers:Targeting recognition of the epitope of neuron-specific enolase via a SERS assay
20
作者 Ran Zhu Pan Zhang +2 位作者 Yitong Xu Jiutong Ma Qiong Jia 《Chinese Chemical Letters》 2025年第6期295-299,共5页
Molecularly imprinted polymers(MIPs)are a kind of synthetic receptors possessing wide application prospects in proteins recognition.However,there are still great challenges in proteins imprinting due to their large si... Molecularly imprinted polymers(MIPs)are a kind of synthetic receptors possessing wide application prospects in proteins recognition.However,there are still great challenges in proteins imprinting due to their large size and easy conformation change.In this study,we explored epitope-oriented MIP based on host-vip interaction(hg-MIP)and constructed a novel hg-MIP-SERS(surface-enhanced Raman scatting)approach for efficiently recognizing the terminal epitopes of neuron-specific enolase(NSE),a well-known disease biomarker for small cell lung cancer,neuroblstom,and Alzheimer's disease.The C-and N-terminal epitopes of NSE were modified with 4-(phenylazo)benzoic acid,then they were used as the templates and immobilized onβ-cyclodextrin-functionalized substrates.The imprinted layer was formed by polymerization of various functional monomers.Combined with SERS detection,an antibody-free sandwich assay based on hg-MIP was successfully used to detect the concentration of NSE in human serums,with the advantages of simple operation,small sample volume(5μL),wide linear range(1–10^(4)ng/m L)and a limit of detection as low as 0.01 ng/m L.The developed epitope-oriented hg-MIP-SERS approach can also be extended to other proteins,expanding the imprinting method of proteins,and has a broad development space in the field of protein separation and detection. 展开更多
关键词 Molecularly imprinted polymers Host-vip interaction Oriented epitope imprinting Surface-enhanced Raman scattering Neuron-specific enolase
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部