This article investigates the interest of using in-situ piezoelectric(PZT and PVDF)disks to perform real-time Structural Health Monitoring(SHM)of glass fiber-reinforced polymer composites submitted to var-ious tensile...This article investigates the interest of using in-situ piezoelectric(PZT and PVDF)disks to perform real-time Structural Health Monitoring(SHM)of glass fiber-reinforced polymer composites submitted to var-ious tensile loadings.The goal is to evaluate the working range and SHM potential of such embedded transducers for relatively simple mechanical loadings,with the long-term aim of using them to monitor complete 3D structures submitted to more complex loadings.SHM is performed acquiring the electrical capacitance variation of the embedded transducers.To study the potential links between the insitu capacitance signal and the global response of the loaded host specimens,a multi-instrumentation composed of external Nondestructive Testing techniques was implemented on the surfaces of the specimens to search for multi-physical couplings between these external measurements and the capacitance curves.Results confirmed the non-intrusiveness of the embedded transducers,and allowed estimating their working domain.PZT capacitance signal follows well the mechanical loadings,but the piezoceramic transducer gets damaged after a determined relatively low strain level due to its brittleness.The limits of this working domain are extended by using a stretchable PolyVinylidene Fluoride(PVDF)polymer transducer,allowing this one to perform in-situ and real-time SHM of its host tensile specimens until failure.展开更多
Carbon Nanotubes(CNTs)reinforced Polymer-Matrix Composites(PMCs)is widely used as insulation materials in thermal protection system of aerospace propulsion.However,CNTs are prone to oxidation and have high thermal con...Carbon Nanotubes(CNTs)reinforced Polymer-Matrix Composites(PMCs)is widely used as insulation materials in thermal protection system of aerospace propulsion.However,CNTs are prone to oxidation and have high thermal conductivities,which makes it difficult to improve the ablation resistance of insulation materials that contain CNTs.SiO_(2)was encapsulated onto the surface of CNTs(CNTs@SiO_(2)),which were then added to Ethylene Propylene Diene Monomer(EPDM)rubber to prepare the insulation materials.Thermogravimetric analysis and ablation test were used to evaluate the resistance of the insulation materials to thermal oxidation and ablation.Additionally,scanning electron microscopy was performed to analyze their microstructures.Results revealed that the addition of CNTs@SiO_(2)could visibly reduce the effects of hot corrosion and ablation on insulation materials.The C-CNTs@SiO_(2)-1 formulation had the best ablative resistance.Further,compared with the unencapsulated formulation(C-CNTs-10),the C-CNTs@SiO_(2)-1 formulation reduced the line ablation rate by 51%to 0.0130 mm/s after oxygen-acetylene experiments.Lastly,the ablation mechanism was investigated based on the effects of the CNTs@SiO_(2)additive on their properties.Thus,the improvement in ablation performance may be attributed to CNTs@SiO_(2)-induced decreases in thermal conductivity,improvement in the hot corrosion resistance in the char layer,and changes in the microstructure.展开更多
Both experimental and simulation approaches were employed to investigate the laser ablation mechanism and performances of Glass Fiber Reinforced Phenolic Composites(GFRP).During the ablation process,the difference in ...Both experimental and simulation approaches were employed to investigate the laser ablation mechanism and performances of Glass Fiber Reinforced Phenolic Composites(GFRP).During the ablation process,the difference in thermal conductivities of the glass fibers and the resin matrix as well as their discrepant physical and chemical reactions form a conical ablation morphology.The formation of a residual carbon layer effectively mitigates the ablation rate in the thickness direction.A higher power density results in a faster ablation rate,while a longer irradiation time leads to a larger ablation pit diameter.To account for the variation in thermal conductivity between the fiber and resin,a macro-mesoscale model was developed to differentiate the matrix from the fiber components.Finite element analysis revealed that laser irradiation leads to phenolic decomposition,glass fiber melting vaporization,and residual carbon skeleton evaporation.The dual-scale model exhibits precise prediction capabilities concerning the laser ablation process of GFRP,and its accuracy is confirmed through the comparison of simulation and experimental results for the GFRP laser ablation process.This model provides a feasible method for performance evaluation and lifetime prediction of GFRP subjected to continuous wave laser irradiation.展开更多
Many works have been made for predicting the failure of composite joints.However,there is still lack of method for multi-bolted composite joints subjected to the hygrothermal environment.In this work,a characteristic ...Many works have been made for predicting the failure of composite joints.However,there is still lack of method for multi-bolted composite joints subjected to the hygrothermal environment.In this work,a characteristic curve-based numerical framework is proposed,which includes two main steps and shows low computational cost.Firstly,a 3D finite element model considering hygrothermal effects is established to analyze the bolt-load distribution of multi-bolted joints.Secondly,a new characteristic curve considering the hygrothermal influence is used to obtain the failure pattern and strength of composite joints.The two-,three-and four-bolted composite joints with-55℃/dry(CTD),23℃/dry(RTD)and 70℃/wet(ETW)conditions are investigated.The test outcomes present good agreement with predicted results,which illustrates the effectiveness and applicability of the proposed method.Meanwhile,it is shown that the environmental condition affects the bolt-load ratio slightly,but does not change the location of the key loaded hole.Furthermore,deviations of the strengths in CTD and ETW conditions are about 5%and-16%from that in the RTD condition,respectively.The environmental condition does not affect the failure modes of two-and three-bolted joints,whereas changes the failure mode of the four-bolted joint.The proposed method is efficient,reliable and needs only linear elastic FE analysis,making it applicable for engineering practice.展开更多
The performance and corresponding applications of polymer nanocomposites are highly dominated by the choice of base material,type of fillers,and the processing ways.Carbon black-filled rubber composites(CRC)exemplify ...The performance and corresponding applications of polymer nanocomposites are highly dominated by the choice of base material,type of fillers,and the processing ways.Carbon black-filled rubber composites(CRC)exemplify this,playing a crucial role in various industries.However,due to the complex interplay between these factors and the resulting properties,a simple yet accurate model to predict the mechanical properties of CRC,considering different rubbers,fillers,and processing techniques,is highly desired.This study aims to predict the dispersion of fillers in CRC and forecast the resultant mechanical properties of CRC by leveraging machine learning.We selected various rubbers and carbon black fillers,conducted mixing and vulcanizing,and subsequently measured filler dispersion and tensile performance.Based on 215 experimental data points,we evaluated the performance of different machine learning models.Our findings indicate that the manually designed deep neural network(DNN)models achieved superior results,exhibiting the highest coefficient of determination(R^(2))values(>0.95).Shapley additive explanations(SHAP)analysis of the DNN models revealed the intricate relationship between the properties of CRC and process parameters.Moreover,based on the robust predictive capabilities of the DNN models,we can recommend or optimize CRC fabrication process.This work provides valuable insights for employing machine learning in predicting polymer composite material properties and optimizing the fabrication of high-performance CRC.展开更多
Polymers with particle inclusions have wide applications,and the mechanical properties of polymer composites affect their reliability in service.The strength of these composites is dependent on factors such as particl...Polymers with particle inclusions have wide applications,and the mechanical properties of polymer composites affect their reliability in service.The strength of these composites is dependent on factors such as particle fraction,size,distribution,and interface interaction between the two phases,in addition to the properties of the polymers and particles.The size effect of particles and interface damage play an important role and thus draw considerable attention.In this paper,the size-and interface-dependent strength of polypropylene(PP)with nano/micro silica(SiO_(2))particles of different fractions is studied through a combination of tensile experiments on a series of samples and corresponding three-dimensional(3D)finite element modeling.The results indicate that PP with 2%SiO_(2)nanoparticles of 50 nm exhibits relatively higher tensile strength,shedding light on the microstructure mechanism where smaller particle sizes lead to better interface bonding.Furthermore,the particle size and interface coupling effect is analyzed based on the size-dependent elastic modulus model and the interface-cohesive model.The simulation demonstrates the local interface damage evolution around a particle of the composites in tension.These findings are beneficial for designing polymer composites with nanoparticle inclusions.展开更多
Highly efficient electromagnetic shielding materials have become an increasing requirement for high-power electronic equipment.Nevertheless,there still remains a challenge in achieving excellent elec-tromagnetic inter...Highly efficient electromagnetic shielding materials have become an increasing requirement for high-power electronic equipment.Nevertheless,there still remains a challenge in achieving excellent elec-tromagnetic interference(EMI)shielding performance with low reflection.Herein,a gradient distri-bution of segregated conductive network consisting of edge-selectively carboxylated graphene(ECG)nanosheets and carboxylated multi-walled carbon nanotubes(cMWCNTs)in poly(vinylidene fluoride)(PVDF)nanocomposites was first designed to achieve outstanding low reflective electromagnetic shielding performance.The sheets of PVDF nanocomposites with different contents of hybrid ECG-cMWCNTs were stacked and further hot-pressed to fabricate the layered PVDF nanocomposites.The overall EMI shielding effectiveness(EMI SE)performance could be further improved by increasing the overall thickness and the layer number.With a fixed thickness of 2.0 mm,the PVDF@7.5wt%ECG_(1)-cMWCNTs 3 six-layered nanocom-posites exhibit excellent EMI SE reaching 79.87 dB with an absorption effectiveness(SE A)of 79.62 dB.The excellent EMI SE performance was ascribed to the multiple interface reflection of the segregated conduc-tive network.Meanwhile,the gradient distribution of ECG-cMWCNTs endows the nanocomposites with a strong absorption ability.This work provides a novel strategy for fabricating EMI shielding composites with low reflection for application in portable electronic devices.展开更多
The endeavor to attain prolonged stability and heightened electromagnetic interference shielding effec-tiveness(EMI SE)in polymer-matrix composites remains an arduous pursuit,particularly when subjected to external me...The endeavor to attain prolonged stability and heightened electromagnetic interference shielding effec-tiveness(EMI SE)in polymer-matrix composites remains an arduous pursuit,particularly when subjected to external mechanical trauma or adverse environmental conditions.In this context,a self-healing and efficient EMI shielding polycaprolactone(PCL)composite with a unique electromagnetic gradient and interface-metalized segregated structure is assembled through layer-by-layer casting and a hot-pressing process.The combined effect of the induction of the electromagnetic gradient layer and the massive mul-tiple interface reflection and scattering from the segregated-like structure results in an exceptional EMI SE of 57.0 dB and a low reflection(R)value of only 0.28.Additionally,the composite boasts impressive photothermal and electrothermal properties,allowing for self-healing under solar irradiation or electri-cal stimulation.Remarkably,this self-healing capability has been demonstrated through five cutting and healing cycles,exhibiting an impressive EMI SE retention rate of 88%.Consequently,the composite with rapid photo/electro-driven self-healing properties will be able to maintain EMI shielding performance.展开更多
The fluorescent complex Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, MA=Maleic an- hydrider) was synthesized and characterized with elemental analysis, infrared spectrum (IR)...The fluorescent complex Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, MA=Maleic an- hydrider) was synthesized and characterized with elemental analysis, infrared spectrum (IR), scanning electron microscope (SEM), X-ray Diffraction(XRD), differential scanning calorimetry(DSC), and fluorescent measurement. To explore the effect of different physical dispersion state of Eu-complex on the fluorescent property of the Eu-complex/silicon rubber composites, various quantifies of Eu(TTA)2(phen) (MA) were mixed with silicon rubber (SIR) and peroxide to form uncured composites. These composites were vulcanized to obtain cured Eu-complex/SiR composites at 250 ℃, which was higher than the melting-point of Eu-complex. The SEM, XRD, DSC, and the fluorescent measurement of these composites showed that both the complex molecules dispersed in the silicon rubber during the melting process and the parent Eu-complex particles had positive effects on fluorescent property, whereas the re-crystallized Eu-complex particles and the aggregating complexes formed during the melting-process had negative effects on fluorescent property. For the uncured composites, their fluorescent intensities almost did not change with the increasing amount of Eu-complex. Furthermore, for the composites with small content of Eu-complex, their fluorescent intensities decreased significantly after curing, and this difference in fluorescent intensity became smaller as the content of Eu-complex increases.展开更多
文摘This article investigates the interest of using in-situ piezoelectric(PZT and PVDF)disks to perform real-time Structural Health Monitoring(SHM)of glass fiber-reinforced polymer composites submitted to var-ious tensile loadings.The goal is to evaluate the working range and SHM potential of such embedded transducers for relatively simple mechanical loadings,with the long-term aim of using them to monitor complete 3D structures submitted to more complex loadings.SHM is performed acquiring the electrical capacitance variation of the embedded transducers.To study the potential links between the insitu capacitance signal and the global response of the loaded host specimens,a multi-instrumentation composed of external Nondestructive Testing techniques was implemented on the surfaces of the specimens to search for multi-physical couplings between these external measurements and the capacitance curves.Results confirmed the non-intrusiveness of the embedded transducers,and allowed estimating their working domain.PZT capacitance signal follows well the mechanical loadings,but the piezoceramic transducer gets damaged after a determined relatively low strain level due to its brittleness.The limits of this working domain are extended by using a stretchable PolyVinylidene Fluoride(PVDF)polymer transducer,allowing this one to perform in-situ and real-time SHM of its host tensile specimens until failure.
基金supported by the National Natural Science Foundation of China(Nos.51576165,51876177)。
文摘Carbon Nanotubes(CNTs)reinforced Polymer-Matrix Composites(PMCs)is widely used as insulation materials in thermal protection system of aerospace propulsion.However,CNTs are prone to oxidation and have high thermal conductivities,which makes it difficult to improve the ablation resistance of insulation materials that contain CNTs.SiO_(2)was encapsulated onto the surface of CNTs(CNTs@SiO_(2)),which were then added to Ethylene Propylene Diene Monomer(EPDM)rubber to prepare the insulation materials.Thermogravimetric analysis and ablation test were used to evaluate the resistance of the insulation materials to thermal oxidation and ablation.Additionally,scanning electron microscopy was performed to analyze their microstructures.Results revealed that the addition of CNTs@SiO_(2)could visibly reduce the effects of hot corrosion and ablation on insulation materials.The C-CNTs@SiO_(2)-1 formulation had the best ablative resistance.Further,compared with the unencapsulated formulation(C-CNTs-10),the C-CNTs@SiO_(2)-1 formulation reduced the line ablation rate by 51%to 0.0130 mm/s after oxygen-acetylene experiments.Lastly,the ablation mechanism was investigated based on the effects of the CNTs@SiO_(2)additive on their properties.Thus,the improvement in ablation performance may be attributed to CNTs@SiO_(2)-induced decreases in thermal conductivity,improvement in the hot corrosion resistance in the char layer,and changes in the microstructure.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.2232022D-28)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.2016QNRC001).
文摘Both experimental and simulation approaches were employed to investigate the laser ablation mechanism and performances of Glass Fiber Reinforced Phenolic Composites(GFRP).During the ablation process,the difference in thermal conductivities of the glass fibers and the resin matrix as well as their discrepant physical and chemical reactions form a conical ablation morphology.The formation of a residual carbon layer effectively mitigates the ablation rate in the thickness direction.A higher power density results in a faster ablation rate,while a longer irradiation time leads to a larger ablation pit diameter.To account for the variation in thermal conductivity between the fiber and resin,a macro-mesoscale model was developed to differentiate the matrix from the fiber components.Finite element analysis revealed that laser irradiation leads to phenolic decomposition,glass fiber melting vaporization,and residual carbon skeleton evaporation.The dual-scale model exhibits precise prediction capabilities concerning the laser ablation process of GFRP,and its accuracy is confirmed through the comparison of simulation and experimental results for the GFRP laser ablation process.This model provides a feasible method for performance evaluation and lifetime prediction of GFRP subjected to continuous wave laser irradiation.
基金supported by the China Postdoctoral Science Foundation(No.2020M680325)the Chinese National Natural Science Fund(Nos.12172067 and 12072005)+4 种基金the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-007)the Aeronautical Science Foun-dation of China(No.2022Z0570Q9002)the Young Elite Sci-entists Sponsorship Program by CAST,China(No.2020QNRC001)the Chongqing Talent Plan,China(No.cstc2022ycjh-bgzxm0144)the Project of High-Level Talents Introduction of Hebei Province,China(No.2021HBQZYCSB009)。
文摘Many works have been made for predicting the failure of composite joints.However,there is still lack of method for multi-bolted composite joints subjected to the hygrothermal environment.In this work,a characteristic curve-based numerical framework is proposed,which includes two main steps and shows low computational cost.Firstly,a 3D finite element model considering hygrothermal effects is established to analyze the bolt-load distribution of multi-bolted joints.Secondly,a new characteristic curve considering the hygrothermal influence is used to obtain the failure pattern and strength of composite joints.The two-,three-and four-bolted composite joints with-55℃/dry(CTD),23℃/dry(RTD)and 70℃/wet(ETW)conditions are investigated.The test outcomes present good agreement with predicted results,which illustrates the effectiveness and applicability of the proposed method.Meanwhile,it is shown that the environmental condition affects the bolt-load ratio slightly,but does not change the location of the key loaded hole.Furthermore,deviations of the strengths in CTD and ETW conditions are about 5%and-16%from that in the RTD condition,respectively.The environmental condition does not affect the failure modes of two-and three-bolted joints,whereas changes the failure mode of the four-bolted joint.The proposed method is efficient,reliable and needs only linear elastic FE analysis,making it applicable for engineering practice.
基金supported by the National Key R&D Program of China(No.2022YFB3707303)the National Natural Science Foundation of China(No.52293471).
文摘The performance and corresponding applications of polymer nanocomposites are highly dominated by the choice of base material,type of fillers,and the processing ways.Carbon black-filled rubber composites(CRC)exemplify this,playing a crucial role in various industries.However,due to the complex interplay between these factors and the resulting properties,a simple yet accurate model to predict the mechanical properties of CRC,considering different rubbers,fillers,and processing techniques,is highly desired.This study aims to predict the dispersion of fillers in CRC and forecast the resultant mechanical properties of CRC by leveraging machine learning.We selected various rubbers and carbon black fillers,conducted mixing and vulcanizing,and subsequently measured filler dispersion and tensile performance.Based on 215 experimental data points,we evaluated the performance of different machine learning models.Our findings indicate that the manually designed deep neural network(DNN)models achieved superior results,exhibiting the highest coefficient of determination(R^(2))values(>0.95).Shapley additive explanations(SHAP)analysis of the DNN models revealed the intricate relationship between the properties of CRC and process parameters.Moreover,based on the robust predictive capabilities of the DNN models,we can recommend or optimize CRC fabrication process.This work provides valuable insights for employing machine learning in predicting polymer composite material properties and optimizing the fabrication of high-performance CRC.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.12172035,92160203,and 91860102)the fundamental Research Funds for the Central Universities of China(buctrc201930).
文摘Polymers with particle inclusions have wide applications,and the mechanical properties of polymer composites affect their reliability in service.The strength of these composites is dependent on factors such as particle fraction,size,distribution,and interface interaction between the two phases,in addition to the properties of the polymers and particles.The size effect of particles and interface damage play an important role and thus draw considerable attention.In this paper,the size-and interface-dependent strength of polypropylene(PP)with nano/micro silica(SiO_(2))particles of different fractions is studied through a combination of tensile experiments on a series of samples and corresponding three-dimensional(3D)finite element modeling.The results indicate that PP with 2%SiO_(2)nanoparticles of 50 nm exhibits relatively higher tensile strength,shedding light on the microstructure mechanism where smaller particle sizes lead to better interface bonding.Furthermore,the particle size and interface coupling effect is analyzed based on the size-dependent elastic modulus model and the interface-cohesive model.The simulation demonstrates the local interface damage evolution around a particle of the composites in tension.These findings are beneficial for designing polymer composites with nanoparticle inclusions.
基金support from the Sichuan Science and Technology Program(2022YFH0090)and the Fundamental Research Funds for the Central Universities.
文摘Highly efficient electromagnetic shielding materials have become an increasing requirement for high-power electronic equipment.Nevertheless,there still remains a challenge in achieving excellent elec-tromagnetic interference(EMI)shielding performance with low reflection.Herein,a gradient distri-bution of segregated conductive network consisting of edge-selectively carboxylated graphene(ECG)nanosheets and carboxylated multi-walled carbon nanotubes(cMWCNTs)in poly(vinylidene fluoride)(PVDF)nanocomposites was first designed to achieve outstanding low reflective electromagnetic shielding performance.The sheets of PVDF nanocomposites with different contents of hybrid ECG-cMWCNTs were stacked and further hot-pressed to fabricate the layered PVDF nanocomposites.The overall EMI shielding effectiveness(EMI SE)performance could be further improved by increasing the overall thickness and the layer number.With a fixed thickness of 2.0 mm,the PVDF@7.5wt%ECG_(1)-cMWCNTs 3 six-layered nanocom-posites exhibit excellent EMI SE reaching 79.87 dB with an absorption effectiveness(SE A)of 79.62 dB.The excellent EMI SE performance was ascribed to the multiple interface reflection of the segregated conduc-tive network.Meanwhile,the gradient distribution of ECG-cMWCNTs endows the nanocomposites with a strong absorption ability.This work provides a novel strategy for fabricating EMI shielding composites with low reflection for application in portable electronic devices.
基金supported by the Sichuan Science and Technology Program(Nos.2023YFG0210,2022YFG0276,24NSFSC1700).
文摘The endeavor to attain prolonged stability and heightened electromagnetic interference shielding effec-tiveness(EMI SE)in polymer-matrix composites remains an arduous pursuit,particularly when subjected to external mechanical trauma or adverse environmental conditions.In this context,a self-healing and efficient EMI shielding polycaprolactone(PCL)composite with a unique electromagnetic gradient and interface-metalized segregated structure is assembled through layer-by-layer casting and a hot-pressing process.The combined effect of the induction of the electromagnetic gradient layer and the massive mul-tiple interface reflection and scattering from the segregated-like structure results in an exceptional EMI SE of 57.0 dB and a low reflection(R)value of only 0.28.Additionally,the composite boasts impressive photothermal and electrothermal properties,allowing for self-healing under solar irradiation or electri-cal stimulation.Remarkably,this self-healing capability has been demonstrated through five cutting and healing cycles,exhibiting an impressive EMI SE retention rate of 88%.Consequently,the composite with rapid photo/electro-driven self-healing properties will be able to maintain EMI shielding performance.
基金the National Natural Science Foundation of China,the China Energy Conservation Investment Corporation (50173004 and 50503002)the Beijing New Star Project (2003A11)+2 种基金the National High-Tech. Research Developing Foundation (863,2003AA324030)Beijing Municipal Commission of Education (JD100100403)National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (2006BAE03B)
文摘The fluorescent complex Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, MA=Maleic an- hydrider) was synthesized and characterized with elemental analysis, infrared spectrum (IR), scanning electron microscope (SEM), X-ray Diffraction(XRD), differential scanning calorimetry(DSC), and fluorescent measurement. To explore the effect of different physical dispersion state of Eu-complex on the fluorescent property of the Eu-complex/silicon rubber composites, various quantifies of Eu(TTA)2(phen) (MA) were mixed with silicon rubber (SIR) and peroxide to form uncured composites. These composites were vulcanized to obtain cured Eu-complex/SiR composites at 250 ℃, which was higher than the melting-point of Eu-complex. The SEM, XRD, DSC, and the fluorescent measurement of these composites showed that both the complex molecules dispersed in the silicon rubber during the melting process and the parent Eu-complex particles had positive effects on fluorescent property, whereas the re-crystallized Eu-complex particles and the aggregating complexes formed during the melting-process had negative effects on fluorescent property. For the uncured composites, their fluorescent intensities almost did not change with the increasing amount of Eu-complex. Furthermore, for the composites with small content of Eu-complex, their fluorescent intensities decreased significantly after curing, and this difference in fluorescent intensity became smaller as the content of Eu-complex increases.