期刊文献+
共找到99,421篇文章
< 1 2 250 >
每页显示 20 50 100
Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process 被引量:7
1
作者 刘公平 卫旺 +1 位作者 金万勤 徐南平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期62-70,共9页
Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic... Pervaporation(PV),as an environmental friendly and energy-saving separation technology,has been received increasing attention in recent years.This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes.The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane(PDMS) and hydrophilic poly(vinyl alcohol)(PVA),chitosan(CS) and polyelectrolytes.The effects of ceramic support treatment,polymer solution properties,interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed.Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussion.The applications of these composite membranes in pervaporation process are summarized as well,which contain the bio-fuels recovery,gasoline desulfuration and PV coupled proc-ess using PDMS/ceramic composite membrane,and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane.Finally,a brief conclusion remark on polymer/ceramic composite mem-branes is given and possible future research is outlined. 展开更多
关键词 polymer/ceramic composite membrane PERVAPORATION bio-fuel recovery solvent dehydration PV cou-pled process
在线阅读 下载PDF
Vat photopolymerization 3D printing of ceramic cores:Advances,challenges,and prospects
2
作者 Xiang Li Hai-jun Su +7 位作者 Dong Dong Hao Jiang Ya-wen Ma Zhong-lin Shen Yi-nuo Guo Yun Zhang Zhuo Zhang Min Guo 《China Foundry》 2025年第5期493-506,共14页
To meet the evolving demands of aeroengine development,the structural and performance requirements for ceramic cores have become increasingly stringent.Vat photopolymerization 3D printing,owing to its moldless,fiexibl... To meet the evolving demands of aeroengine development,the structural and performance requirements for ceramic cores have become increasingly stringent.Vat photopolymerization 3D printing,owing to its moldless,fiexible manufacturing,and other advantages,demonstrates significant potential in the preparation of ceramic cores with intricate structures.However,its practical application still faces multiple challenges,including layered structures and property anisotropy,defects such as cracks and collapse during printing and sintering,forming inaccuracies,and difficulties in controlling surface roughness.Recent advances have focused on optimizing slurry formulation and rheology,improving curing behavior,introducing auxiliary powders and additives,tailoring forming parameters,and optimizing the sintering process.Nevertheless,effectively suppressing lamellar defects,achieving superior dimensional accuracy,and maintaining high surface quality in complex structures remain the core scientific and technical issues to be solved.Future research should concentrate on refining curing mechanisms,advancing powder design and organic system optimization,and regulating the coupled processes of forming,debinding,and sintering to accelerate the application of VPP 3D printed ceramic cores in aerospace manufacturing. 展开更多
关键词 vat photopolymerization ceramic cores layered structures forming accuracy
在线阅读 下载PDF
Mitigating anisotropy of vat photopolymerization 3D printing Al_(2)O_(3)-based ceramic cores through zircon addition
3
作者 Bo-yang Qu Rui-long Yu +7 位作者 Tian-chi Chen Qiao-lei Li Ang Li Wei Liu Xi-he Liu Xin-yan Yue Jing-jing Liang Jin-guo Li 《China Foundry》 2025年第5期592-602,共11页
Ceramic cores are important in the fabrication of superalloy hollow blades,which are increasingly characterized by intricate internal cavity channels.This complexity poses significant challenges to traditional manufac... Ceramic cores are important in the fabrication of superalloy hollow blades,which are increasingly characterized by intricate internal cavity channels.This complexity poses significant challenges to traditional manufacturing processes.The vat photopolymerization 3D printing technology provides a new choice for ceramic cores with complex structures.However,the lamellar structure of the vat photopolymerization 3D printed ceramic cores leads to the anisotropy.Meanwhile,the low strength and high shrinkage of ceramic cores restrict their industrial application.In this study,using Al_(2)O_(3)powder as the main material,the effects of zircon content on the sintering shrinkage,open porosity,fiexural strength,and other properties of Al_(2)O_(3)-based ceramic cores were studied to address the aforementioned issues.The influencing mechanism of zircon distribution on sintering shrinkage was analyzed,and the strengthening mechanism of mullite on ceramic cores was discussed from both thermodynamics and dynamics aspects.Through the comprehensive evaluation of ceramic core properties,the Al_(2)O_(3)-based ceramic core with 15vol.%zircon exhibites the optimal performance.Compared with the core samples without zirconium addition,the fiexural strength of the Al_(2)O_(3)-based ceramic core with 15vol.%zircon increases from 14.80 MPa to 61.54 MPa at 25°C,an increase of 315.8%;and from 4.91 MPa to 11.59 MPa at 1,500°C,an increase of 136.0%.The shrinkage in the Z-axis is reduced by 21%,which better weakens the anisotropy of the shrinkage of 3D printed Al_(2)O_(3)-based ceramic cores.ZrO_(2)phase and mullite phase are formed by zircon,which improve the comprehensive properties of Al_(2)O_(3)-based ceramic cores.The successful 3D printing of high-performance Al_(2)O_(3)-based ceramic cores via vat photopolymerization has promoted its industrial application for fabricating ceramic cores with complex structures. 展开更多
关键词 3D printing ANISOTROPY ceramic cores fiexural strength sintering shrinkage
在线阅读 下载PDF
Vat photopolymerization of silica-based ceramic cores using high solid loading slurry with performance optimization
4
作者 Yong-kang Yang Bo-ran Wang +4 位作者 Zi-qi Jia Shu-xin Niu Xin Li Ya-jie Guo Xi-qing Xu 《China Foundry》 2025年第5期555-564,共10页
Vat photopolymerization(VPP)3D printing is an optimized technology for complex-shaped ceramic cores,in which the solid loading of ceramic slurries greatly infiuences the microstructure and property of the final cerami... Vat photopolymerization(VPP)3D printing is an optimized technology for complex-shaped ceramic cores,in which the solid loading of ceramic slurries greatly infiuences the microstructure and property of the final ceramic parts.However,the high solid loading of slurries is highly limited by the high viscosity.In this study,silica-based ceramic core slurries with solid loading up to 68vol.%were achieved by the composition design to optimize the performance,considering the curing,rheological,and double bond conversion rate.The slurries demonstrate superior curing and rheological performance with mass ratio of monomers being 3:2 and mass fraction of BYK111 being 4wt.%.Afterwards,the impact of solid loading on the morphology and mechanical properties was investigated.As the solid loading increases,the microstructure becomes gradually dense,leading to an improved flexural strength of 19.5 MPa.Additionally,the sintering shrinkage becomes more uniform,satisfying the casting requirements effectively.This work serves as a guide for the preparation of ceramic slurries with a high solid loading. 展开更多
关键词 ceramic core additive manufacturing mechanical performance solid loading VISCOSITY vat photopolymerization
在线阅读 下载PDF
Vat photopolymerization 3D printing of Al_(2)O_(3) ceramic cores with TPMS micro lattice structure
5
作者 Xiao-fei Zhai Jing-yi Chen +4 位作者 Xue-qin Zhang Yuan-hong Qian Rong Chen Wei Zhang Ru-jie He 《China Foundry》 2025年第5期565-573,共9页
The complex ceramic core used for hollow turbine blades requires a high porosity and a high fiexural strength. For a better balance between porosity and fiexural strength, ceramic materials with porous structures are ... The complex ceramic core used for hollow turbine blades requires a high porosity and a high fiexural strength. For a better balance between porosity and fiexural strength, ceramic materials with porous structures are preferred. In order to achieve the transition from disordered pore formation to ordered pore formation, Al_(2)O_(3) ceramic cores with triply periodic minimal surface(TPMS) micro lattice structures with different structural configurations(gyroid, diamond, and neovius) and different volume fractions of lattice structures(30, 40, and 50, vol.%) were designed and prepared by vat photopolymerization 3D printing. The effects of structural configuration and volume fraction of the lattice structure on the following structural shrinkage, microstructure, and flexural strength were investigated. The shrinkage relationship of the three lattice configurations is: neovius>diamond>gyroid. Besides, it is found that with an increase in the volume fraction of the 3D printed Al_(2)O_(3) ceramic micro lattice structures, their fiexural strength correspondingly increases ranging from 54.95 MPa to 139.1 MPa. The maximum average fiexural strength of the 3D printed Al_(2)O_(3) ceramic micro lattice structures is obtained when the structural configuration is diamond and with a volume fraction of 50vol.%, which is 139.1 MPa. Even when the volume fraction of the lattice structure is 30vol.%, that is to say the porosity is 70%, the fiexural strength is as high as 50-70 MPa, which can still be maintained at a high level. In addition, when the volume fraction of the lattice structure is a certain value, the sample with diamond configuration has a higher strength. The internal pore morphology, pore size, and porosity of the cores are precisely controlled, achieving both a high porosity and a high strength. Therefore, this study maintains high porosity and high strength simultaneously, providing a new lattice structure design idea for 3D printed ceramic cores. 展开更多
关键词 alumina ceramic cores vat photopolymerization 3D printing micro lattice microstructure mechanical property
在线阅读 下载PDF
Recent Progresses in Synthesis of Cyclic Polymers in Large-scale and Some Functionalized Composites
6
作者 QU Kairu GUO Lyuzhou +3 位作者 WANG Wenbin YAN Xuzhou CAO Xuezheng YANG Zhenzhong 《高等学校化学学报》 北大核心 2026年第1期42-57,共16页
Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam... Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering. 展开更多
关键词 Cyclic polymer Large-scale synthesis Single-chain nanoparticle Performance Composite
在线阅读 下载PDF
An Emerging Liquid‑Crystalline Conducting Polymer Thermoelectrics:Opportunities and Challenges
7
作者 Zhenqiang Ye Mingdong Zhang +3 位作者 Junyang Deng Lirong Liang Chunyu Du Guangming Chen 《Nano-Micro Letters》 2026年第3期240-273,共34页
Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are ga... Thermoelectric(TE)materials,being capable of converting waste heat into electricity,are pivotal for sustainable energy solutions.Among emerging TE materials,organic TE materials,particularly conjugated polymers,are gaining prominence due to their unique combination of mechanical flexibility,environmental compatibility,and solution-processable fabrication.A notable candidate in this field is poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene)(PBTTT),a liquid-crystalline conjugated polymer,with high charge carrier mobility and adaptability to melt-processing techniques.Recent advancements have propelled PBTTT’s figure of merit from below 0.1 to a remarkable 1.28 at 368 K,showcasing its potential for practical applications.This review systematically examines strategies to enhance PBTTT’s TE performance through doping(solution,vapor,and anion exchange doping),composite engineering,and aggregation state controlling.Recent key breakthroughs include ion exchange doping for stable charge modulation,multi-heterojunction architectures reducing thermal conductivity,and proton-coupled electron transfer doping for precise Fermi-level tuning.Despite great progress,challenges still persist in enhancing TE conversion efficiency,balancing or decoupling electrical conductivity,Seebeck coefficient and thermal conductivity,and leveraging melt-processing scalability of PBTTT.By bridging fundamental insights with applied research,this work provides a roadmap for advancing PBTTT-based TE materials toward efficient energy harvesting and wearable electronics. 展开更多
关键词 Thermoelectric materials polymer PBTTT LIQUID-CRYSTALLINE
在线阅读 下载PDF
Electrospun Nanofiber-Based Ceramic Aerogels:Synergistic Strategies for Design and Functionalization
8
作者 Panpan Li Xuan Zhang +3 位作者 Ying Li Cunyi Zhao Jianyong Yu Yang Si 《Nano-Micro Letters》 2026年第1期562-607,共46页
Ceramic aerogels(CAs)have emerged as a significant research frontier across various applications due to their lightweight,high porosity,and easily tunable structural characteristics.However,the intrinsic weak interact... Ceramic aerogels(CAs)have emerged as a significant research frontier across various applications due to their lightweight,high porosity,and easily tunable structural characteristics.However,the intrinsic weak interactions among the constituent nanoparticles,coupled with the limited toughness of traditional CAs,make them susceptible to structural collapse or even catastrophic failure when exposed to complex mechanical external forces.Unlike 0D building units,1D ceramic nanofibers(CNFs)possess a high aspect ratio and exceptional flexibility simultaneously,which are desirable building blocks for elastic CAs.This review presents the recent progress in electrospun ceramic nanofibrous aerogels(ECNFAs)that are constructed using ECNFs as building blocks,focusing on the various preparation methods and corresponding structural characteristics,strategies for optimizing mechanical performance,and a wide range of applications.The methods for preparing ECNFs and ECNFAs with diverse structures were initially explored,followed by the implementation of optimization strategies for enhancing ECNFAs,emphasizing the improvement of reinforcing the ECNFs,establishing the bonding effects between ECNFs,and designing the aggregate structures of the aerogels.Moreover,the applications of ECNFAs across various fields are also discussed.Finally,it highlights the existing challenges and potential opportunities for ECNFAs to achieve superior properties and realize promising prospects. 展开更多
关键词 Electrospinning nanofibers ceramic aerogels Mechanical properties
在线阅读 下载PDF
Preparation,Microstructure and Properties of Mullite-Quartz-Corundum System Ceramic Thin Plates
9
作者 WU Jianfeng ZHANG Yunliang +3 位作者 XU Xiaohong ZHANG Yihan ZHANG Deng YUAN Jiajun 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期15-24,共10页
Ceramic thin plates were prepared using kaolin,potassium sodium feldspar and quartz powder as the main raw materials and kaolin,α-Al_(2)O_(3),MoO_(3) and AlF_(3)·3H_(2)O as additives.The experiment examined the ... Ceramic thin plates were prepared using kaolin,potassium sodium feldspar and quartz powder as the main raw materials and kaolin,α-Al_(2)O_(3),MoO_(3) and AlF_(3)·3H_(2)O as additives.The experiment examined the effects of different additives on mullite formation,as well as the microstructure and properties of the ceramic thin plates.Additionally,the study explored the toughening and strengthening mechanisms induced by the additives,providing a theoretical foundation for further optimizing the toughness of ceramic thin plates.The results showed that the D4 sample fired at 1220℃(with an addition of 20 wt% α-Al_(2)O_(3))exhibited the best performance,with a water absorption rate of 0.07%,apparent porosity of 0.18%,bulk density of 2.75 g·cm^(-3),firing shrinkage of 12.76%,bending strength reaching 101.93 MPa,and fracture toughness of 2.51 MPa·m^(1/2).As the amount ofα-Al_(2)O_(3) additive increased,the ceramic thin plates exhibited a greater abundance of short rod-like mullite and corundum grains,which were tightly packed together,forming a framework for the ceramic thin plates.This microstructure enhanced pathways for crack propagation,dispersed internal stresses,and increased fracture surface energy,resulting in significant improvements in both strength and fracture toughness of the ceramic thin plates. 展开更多
关键词 ceramic thin plates mullite-quartz-corundum system fracture toughness strength MICRO-STRUCTURE
原文传递
First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics
10
作者 Yonggang Tong Kai Yang +5 位作者 Pengfei Li Yongle Hu Xiubing Liang Jian Liu Yejun Li Jingzhong Fang 《Computers, Materials & Continua》 2026年第1期353-367,共15页
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu... (NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials. 展开更多
关键词 High entropy ceramics mechanical properties electronic properties thermodynamic properties
在线阅读 下载PDF
Impedance of RF shield on ceramic chamber in the rapid cycling synchrotron of China Spallation Neutron Source
11
作者 Liang‑Sheng Huang Bin Wu +6 位作者 Ming‑Yang Huang Ren‑Hong Liu Biao Tan Peng‑Cheng Wang Yong‑Chuan Xiao Li‑Rui Zeng Xiao Li 《Nuclear Science and Techniques》 2026年第1期130-140,共11页
In a rapid cycling synchrotron(RCS),the magnetic field is synchronized with the beam energy,creating a highly dynamic magnetic environment.A ceramic chamber with a shielding layer(RF shield),composed of a series of co... In a rapid cycling synchrotron(RCS),the magnetic field is synchronized with the beam energy,creating a highly dynamic magnetic environment.A ceramic chamber with a shielding layer(RF shield),composed of a series of copper strips connected to a capacitor at either end,is typically employed as a vacuum chamber to mitigate eddy current effects and beam coupling impedance.Consequently,the ceramic chamber exhibits a thin-walled multilayered complex structure.Previous theoretical studies have suggested that the impedance of such a structure has a negligible impact on the beam.However,recent impedance measurements of the ceramic chamber in the China Spallation Neutron Source(CSNS)RCS revealed a resonance in the low-frequency range,which was confirmed by further theoretical analysis as a source of beam instability in the RCS.Currently,the magnitude of this impedance cannot be accurately assessed using theoretical calculations.In this study,we used the CST Microwave Studio to confirm the impedance of the ceramic chamber.Further simulations covering six different types of ceramic chambers were conducted to develop an impedance model in the RCS.Additionally,this study investigates the resonant characteristics of the ceramic chamber impedance,finding that the resonant frequency is closely related to the capacitance of the capacitors.This finding provides clear directions for further impedance optimization and is crucial for achieving a beam power of 500 kW for the CSNS Phase-Ⅱ project(CSNS-Ⅱ).However,careful attention must be paid to the voltage across the capacitors. 展开更多
关键词 Beam coupling impedance ceramic chamber RF shield RESONANCE High dynamic magnetic environment
在线阅读 下载PDF
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
12
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
3D printed high-temperature ceramic conformal array antenna:Design,analysis,manufacturing,and testing
13
作者 Peng Li Ruibo Li +5 位作者 Zijiao Fan Jiujiu Han Guangda Ding Qunbiao Wang Wanye Xu Paolo Rocca 《Defence Technology(防务技术)》 2026年第1期340-353,共14页
In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved cerami... In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved ceramic substrate,and laser sintering and microdroplet spraying processes are used to add the conductive metal on the curved substrate.The problems of gain loss,bandwidth reduction,and frequency shift caused by high temperatures are addressed by using a proper antenna design,with parasitic patches,slots,and metal resonant cavities.The antenna prototype is characterized by the curved substrates and the conductive metals for the power dividers,the patch,and the ground plane;its performance is examined up to a temperature of 600℃in a muffle furnace and compared with the results from the numerical analysis.The results show that the antenna can effectively function at 600℃and even higher temperatures. 展开更多
关键词 ceramic antenna Conformal array High-temperature environment 3D printing High gain and wide band
在线阅读 下载PDF
Advances in polymer-based hydrogel systems for adipose-derived mesenchymal stem cells toward bone regeneration
14
作者 Nivetha Suresh Sundaravadhanan Lekhavadhani Nagarajan Selvamurugan 《World Journal of Orthopedics》 2026年第1期13-28,共16页
Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant i... Bone regeneration for non-load-bearing defects remains a significant clinical challenge requiring advanced biomaterials and cellular strategies.Adiposederived mesenchymal stem cells(AD-MSCs)have garnered significant interest in bone tissue engineering(BTE)because of their abundant availability,minimally invasive harvesting procedures,and robust differentiation potential into osteogenic lineages.Unlike bone marrow-derived mesenchymal stem cells,AD-MSCs can be easily obtained in large quantities,making them appealing alternatives for therapeutic applications.This review explores hydrogels containing polymers,such as chitosan,collagen,gelatin,and hyaluronic acid,and their composites,tailored for BTE,and emphasizes the importance of these hydrogels as scaffolds for the delivery of AD-MSCs.Various hydrogel fabrication techniques and biocompatibility assessments are discussed,along with innovative modifications to enhance osteogenesis.This review also briefly outlines AD-MSC isolation methods and advanced embedding techniques for precise cell placement,such as direct encapsulation and three-dimensional bioprinting.We discuss the mechanisms of bone regeneration in the AD-MSC-laden hydrogels,including osteoinduction,vascularization,and extracellular matrix remodeling.We also review the preclinical and clinical applications of AD-MSC-hydrogel systems,emphasizing their success and limitations.In this review,we provide a comprehensive overview of AD-MSC-based hydrogel systems to guide the development of effective therapies for bone regeneration. 展开更多
关键词 Mesenchymal stem cells Adipose-derived mesenchymal stem cells Bone tissue engineering HYDROGELS Bone regeneration polymerS
在线阅读 下载PDF
A bifunctional cathode enabling efficient decomposition and utilization of nitrous oxide in protonic ceramic fuel cells for power generation
15
作者 Tao Yuan Shaozhuo Jia +7 位作者 Chen Song Yutao Rong Cong Ren Zhimin Li Yubin Chen Youjun Lu Weiwei Wu Yihang Li 《Nano Research》 2026年第1期598-609,共12页
Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy convers... Protonic ceramic fuel cells(PCFCs)have been recognized as promising power generation devices for future clean energy systems,owing to their relatively low activation energy for proton migration and high energy conversion efficiency.In certain application scenarios,the use of N_(2)O(a potent greenhouse gas),as an alternative oxidant to air,presents a feasible strategy.Herein,we report for the first time the operation of PCFCs employing N_(2)O as the oxidant.A hybrid Pr_(2)Ni_(0.6)Co_(0.4)O_(4-δ)(PNCO-214)catalyst is developed,comprising Ruddlesden-Popper(R-P)structured Pr_(4)Ni_(1.8)Co_(1.2)O_(10-δ)(PNCO-4310)and fluorite structured Pr_(6)O_(11)(PO-611),which synergistically exhibits exceptional catalytic activity toward both N_(2)O decomposition and the oxygen reduction reaction,achieving a conversion over 92% and an area specific resistance of 1.301Ω·cm^(2) at 600℃.Quasi-insitu temperature-dependent Fourier transform infrared(FTIR)and electrochemical impedance spectroscopy analyses reveal that abundant oxygen vacancies in PNCO-214 facilitate rapid adsorption and dissociation of N_(2)O into N_(2) and O_(2),while also promoting the surface exchange kinetics of proton/oxygen during oxygen reduction reaction(ORR).When applied in an anode-supported single cell with PNCO-214 cathode operating under N_(2)O,outstanding power density and low resistance are achieved,delivering 0.801 W·cm^(-2) and 0.245Ω·cm^(2) at 600℃.Satisfactory performance is also maintained even when the temperature is reduced to 500℃.Furthermore,the single cell demonstrates relatively good stability with negligible degradation over 130 h at 600℃ and 0.7 V.These findings underscore the potential of PNCO-214 as a highly effective cathode catalyst for enabling the use of N_(2)O as a viable oxidant in PCFCs for specific industrial applications. 展开更多
关键词 protonic ceramic fuel cells hybrid catalyst N_(2)O decomposition oxygen reduction reaction quasi-in-situ characterization
原文传递
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
16
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Effect of active metal oxide dopants on wettability and interfacial reaction between K417G superalloy and Al_(2)O_(3)-based ceramic shell
17
作者 Bao-hong KOU Wen-tao ZHOU +1 位作者 Yong-hui PENG Jing OUYANG 《Transactions of Nonferrous Metals Society of China》 2026年第1期244-258,共15页
Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a... Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface. 展开更多
关键词 Al_(2)O_(3)-based ceramic shell K417G superalloy metal oxide dopants interfacial reaction WETTABILITY
在线阅读 下载PDF
Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics 被引量:2
18
作者 Xiaoling Liu Xiaowei Yin +2 位作者 Wenyan Duan Fang Ye Xinliang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2832-2839,共8页
SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosph... SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosphere. The porosity of SiC-Si3N4 ceramics decreases to 6.4% due to the addition of inert filler Si3N4. And the content and crystallization degree of free carbon and SiC derived from PCS are improved simultaneously with the increase of thermal treatment temperature. Finally, the free carbon and SiC interconnect, forming the conductive network. As a result, the electromagnetic interference(EMI) shielding performance of the as-prepared ceramic annealed at 1400℃ reaches up to 36 d B, meaning more than99.9% of EM energy is shielded. The low porosity and high EMI shielding performance enable SiC-Si3N4 composite ceramics to be a promising electromagnetic shielding and structural material. 展开更多
关键词 polymer derived ceramics Electromagnetic shielding properties SIC-SI3N4 Inert filler
原文传递
New route to synthesize preceramic polymers for zirconium carbide 被引量:3
19
作者 Xue Yu Tao Wen Feng Qiu +2 位作者 Hao Li Tong Zhao Xian Yong Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第9期1075-1078,共4页
A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubili... A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubility and rheology. These properties are useful for the processing of C/C-ZrC composites v/a precursor infiltration and pyrolysis (PIP) process. The polymer to ceramic conversion was investigated by TG, XRD and TEM. Nanosized ZrC was formed by pyrolysis of this precursor at 1300 ℃ in argon with ceramic yield of 57.8%. 展开更多
关键词 Preceramic polymer Zirconium carbide Precursor infiltration and pyrolysis
原文传递
Synthesis of Non-oxide Porous Ceramics Using Random Copolymers as Precursors 被引量:1
20
作者 Xiaoqian Wang Kewei Wang +2 位作者 Jie Kong Yiguang Wang Linan An 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第1期120-124,共5页
In this paper,we reported a novel method for synthesis of non-oxide porous ceramics by using random copolymers as precursors.A silazane oligomer and styrene monomer were used as starting materials,which were copolymer... In this paper,we reported a novel method for synthesis of non-oxide porous ceramics by using random copolymers as precursors.A silazane oligomer and styrene monomer were used as starting materials,which were copolymerized at 120 ℃ to form random polysilazane-polystyrene copolymers.The copolymers were then pyrolyzed at 500 ℃ to obtain porous ceramics by completely decomposing polystyrene(PS) and converting polysilazane(PSZ) into non-oxide Si-C-N ceramics.The obtained material contained a bi-model pore-structure consisting of both micro-sized and nano-sized pores with very high surface area of more than500 m;/g.We also demonstrated that the pore structure and surface area of the materials can be tailored by changing the ratio of the two blocks.Current results suggest a promising simple method for making multiscaled porous non-oxide materials. 展开更多
关键词 Non-oxide porous ceramics polymer-derived ceramics
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部