1 Results Due to the high cell voltage of LiNiVO4,the compound properties have been continuously studied as the potential cathode material for Li-ion batteries.LiNiVO4 cathode product has been known to exhibit high ce...1 Results Due to the high cell voltage of LiNiVO4,the compound properties have been continuously studied as the potential cathode material for Li-ion batteries.LiNiVO4 cathode product has been known to exhibit high cell voltage of 4.8 V[1].LiCH3COO.2H2O (Sigma),Ni(CH3COO)2.4H2O (Aldrich) and NH4VO3(Ajax Finechem) were used as the starting reactants. In this work,LiNiVO4 was prepared by the sol gel method.This method was used to replace the conventional solid state reaction method in terms of the sample ...展开更多
This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir o...This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.展开更多
In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally ca...In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.展开更多
Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of pol...Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of polymer-derived ceramic(PDC)technology for fabricating Si_(3)N_(4)/SiCN ceramics.The chemical structure and composition of the preceramic polymer precursors have a crucial influence on the performance of ceramic products.In this paper,recent advances in the use of polysilazane and polycarbosilazane precursors in AM are reviewed and an outlook for future development is presented.The findings of this study could spark inspiration and reflection regarding AM applications and synthetic technology.It is believed that the development of PDCs in ceramic fabrication will become more versatile and application-oriented and provide more freedom in the design of high-performance ceramics.展开更多
文摘1 Results Due to the high cell voltage of LiNiVO4,the compound properties have been continuously studied as the potential cathode material for Li-ion batteries.LiNiVO4 cathode product has been known to exhibit high cell voltage of 4.8 V[1].LiCH3COO.2H2O (Sigma),Ni(CH3COO)2.4H2O (Aldrich) and NH4VO3(Ajax Finechem) were used as the starting reactants. In this work,LiNiVO4 was prepared by the sol gel method.This method was used to replace the conventional solid state reaction method in terms of the sample ...
文摘This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.
基金The authors wish to acknowledge RECAT-Petrobras,Rede de Hidrogenio-MCTANP for their financial support and scholarship grants.
文摘In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.
基金supported by Natural Science Basic Research Pro-gram of Shaanxi in China(Grant.No.2023-JC-YB-388)National Nat-ural Science Foundation of China(Grant.No.52005392)Fundamental Research Funds for the Central Universities in China,and the Youth In-novation Team of Shaanxi Universities in China.
文摘Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of polymer-derived ceramic(PDC)technology for fabricating Si_(3)N_(4)/SiCN ceramics.The chemical structure and composition of the preceramic polymer precursors have a crucial influence on the performance of ceramic products.In this paper,recent advances in the use of polysilazane and polycarbosilazane precursors in AM are reviewed and an outlook for future development is presented.The findings of this study could spark inspiration and reflection regarding AM applications and synthetic technology.It is believed that the development of PDCs in ceramic fabrication will become more versatile and application-oriented and provide more freedom in the design of high-performance ceramics.