期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Polymer-encapsulated metal complex catalysts:An emerging and efficient platform for electrochemical CO_(2) reduction
1
作者 Yingshuo Liu Shuaishuai Lyu +2 位作者 Fuli Wen Weixuan Nie Shuqing Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期33-50,共18页
Over the past decade,electrocatalytic reduction of CO_(2)has gained substantial attention.However,hardly any of the previous reviews have focused on the systematic discussion of polymer-molecular catalyst composites a... Over the past decade,electrocatalytic reduction of CO_(2)has gained substantial attention.However,hardly any of the previous reviews have focused on the systematic discussion of polymer-molecular catalyst composites as an emerging system for the electrochemical transformation of CO_(2)to value-added products.In this review,we first give a brief overview of the general features of solid-state and molecular catalysts,and then advance the discussion to polymer-catalyst composite systems,with particular emphasis on polymer-encapsulated molecular catalysts,where the coordination environment surrounding molecular catalysts can be modified via polymer encapsulation to promote the overall performance of CO_(2)electrocatalysis.The elucidation of the possible reaction mechanisms of this emerging electrocat-alytic system along with proposed optimization strategies is also summarized and discussed based on recently published reports,followed by the challenges and prospects of their industrial applications at the end of this review.From this review,we hope the audience can gain a comprehensive understanding of the electrocatalytic mechanism of the coordinating polymers and valuable insights into engineering the microenvironment surrounding the metal complexes for potential future research directions. 展开更多
关键词 polymer-molecular catalyst composite polymer encapsulation Coordination environment CO_(2)electrocatalysis Electrocatalytic mechanism
原文传递
Surface morphology of refractive-index waveguide gratings fabricated in polymer films
2
作者 董毅 宋艳芳 +1 位作者 马磊 高芳芳 《Optoelectronics Letters》 EI 2016年第5期329-332,共4页
The characteristic modifications are reported on the surface of polymeric waveguide film in the process of vol- ume-grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200... The characteristic modifications are reported on the surface of polymeric waveguide film in the process of vol- ume-grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are as- cribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By ootimizing the laser carvinR oararneters, hizhly efficient grating devices can be fabricated. 展开更多
关键词 polymerization waveguide swelling polymeric initiated grating encapsulation refractive spacing fabrication
原文传递
Waterproof lithium metal anode enabled by cross-linking encapsulation 被引量:10
3
作者 Ye Xiao Rui Xu +3 位作者 Chong Yan Yeru Liang Jun-Fan Ding Jia-Qi Huang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第11期909-916,M0003,M0004,共10页
Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) in... Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hex afluoropropylene) (PVDF–HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF–HFP polymer toward nonaqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humiditysensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries. 展开更多
关键词 Lithium metal anode polymer encapsulation Interfacial protection Water-stable Air-stable Cross-linking
原文传递
Towards efficient strain engineering of 2D materials:A four-points bending approach for compressive strain 被引量:2
4
作者 Hao Li Félix Carrascoso +4 位作者 Ana Borrás Gloria P.Moreno Francisco J.Aparicio Ángel Barranco Andrés Castellanos Gómez 《Nano Research》 SCIE EI CSCD 2024年第6期5317-5325,共9页
Strain engineering,as a powerful strategy to tune the optical and electrical properties of two-dimensional(2D)materials by deforming their crystal lattice,has attracted significant interest in recent years.2D material... Strain engineering,as a powerful strategy to tune the optical and electrical properties of two-dimensional(2D)materials by deforming their crystal lattice,has attracted significant interest in recent years.2D materials can sustain ultra-high strains,even up to 10%,due to the lack of dangling bonds on their surface,making them ideal brittle solids.This remarkable mechanical resilience,together with a strong strain-tunable band structure,endows 2D materials with a broad optical and electrical response upon strain.However,strain engineering based on 2D materials is restricted by their nanoscale and strain quantification troubles.In this study,we have modified a homebuilt three-points bending apparatus to transform it into a four-points bending apparatus that allows for the application of both compressive and tensile strains on 2D materials.This approach allows for the efficient and reproducible construction of a strain system and minimizes the buckling effect caused by the van der Waals interaction by adamantane encapsulation strategy.Our results demonstrate the feasibility of introducing compressive strain on 2D materials and the potential for tuning their optical and physical properties through this approach. 展开更多
关键词 uniaxial compressive strain polymer encapsulation differential reflectance spectroscopy exciton tunability
原文传递
Modification of silica with PMMA via ultrasonic irradiation and its application for reinforcement of polyacrylates 被引量:1
5
作者 Shouji Qiu Lei Yang +1 位作者 Ya Zhang Yongshen Xu 《Particuology》 SCIE EI CAS CSCD 2013年第6期782-785,共4页
Polymethyl methacrylate (PMMA) encapsulated silica nanocomposite particles were prepared by ultra- sonically induced in situ polymerization of methyl methacrylate (MMA) on the surface of silica sol. The nanopartic... Polymethyl methacrylate (PMMA) encapsulated silica nanocomposite particles were prepared by ultra- sonically induced in situ polymerization of methyl methacrylate (MMA) on the surface of silica sol. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FFIR), transmission electron microscopy (TEM), thermogravimetry (TG), scanning electron microscopy (SEM). The results showed that core-shell structure nanocomposite particles with an average size of 36 nm were obtained, and the thickness of polymer encapsulating layer was about 8 nm. The pretreatment of silica sol with tert-butyl hydroperoxide (TBHP) and the addition of ^-methacryloxypropyl trimethoxysilane (MAPTS) significantly enhanced the encapsulation effect. Modified by the polymer layer, the silica particles could be well dispersed in matrices and utilized to improve the mechanical performance of polyacrylates. 展开更多
关键词 Encapsulation Ultrasonic In situ polymerization Silica Nanocomposites Nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部