Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two crit...Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.展开更多
Radioactive iodine produced from nuclear fission in power plants presents substantial environmental risks and requires effective remediation measures.Metal-organic frameworks(MOFs)containing specifically designed pore...Radioactive iodine produced from nuclear fission in power plants presents substantial environmental risks and requires effective remediation measures.Metal-organic frameworks(MOFs)containing specifically designed pore geometries with stable skeletons that allow dense packing of vip molecules are sought after for iodine capture.Here,14 new MOFs were developed through reticular chemistry for a comprehensive study of the iodine capture behavior.Remarkably,one of this family of materials,JOU-20(FeCo_(2)),exhibited an exceptional static vapor iodine uptake capacity of 3.08 g/g at 80℃and a high iodine storage density of 4.69 g/cm^(3).Significantly,single-crystal X-ray diffraction revealed the adsorbed iodine in JOU-20(FeCo_(2))forming an unusual aggregation of the giant trigonal antiprismatic polyiodide anion[I_(13)]^(−).To the best of our knowledge,this is the first time that the polyiodide[I_(13)]^(−)was structurally resolved in a crystalline framework,and it represents the most iodine-rich polyiodide species ever discovered experimentally.Combined spectroscopy and theoretical calculation methods demonstrated that nitrogen/sulfur sites and metal nodes play critical roles in stabilizing[I_(13)]^(−).This work introduces a pore partition strategy to create a confined space with specific pore geometry for the formation of unusual polyiodide[I_(13)]^(−),and multiple binding sites for stabilizing it,which significantly enhances the iodine adsorption performance of MOFs.展开更多
Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from...Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.展开更多
The arylthio-substituted tetrathiafuivalenes (Ar-S-TTFs) are electron donors having three reversible states, neutral, cation radical, and dica- tion. The charge-transfer (CT) between Ar-S-TTFs (TTF1--TTF3) and i...The arylthio-substituted tetrathiafuivalenes (Ar-S-TTFs) are electron donors having three reversible states, neutral, cation radical, and dica- tion. The charge-transfer (CT) between Ar-S-TTFs (TTF1--TTF3) and iodine (12) is reported herein. TTF1--TTF3 show the CT with 12 in the CH2C12 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1--TTF3 with 12, the charged states of Ar-S-TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2--TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1-D chain of V-shaped (Is)-, and 2-D and 3-D iodine networks composed of 12 and (13)^- .展开更多
Bottom-up construction of highly complex architecture from simple components remains one of the long-standing challenges in chemistry.Herein two supramolecular isomers based on large trigonal prismatic Pd_(3)L^(1)_(6)...Bottom-up construction of highly complex architecture from simple components remains one of the long-standing challenges in chemistry.Herein two supramolecular isomers based on large trigonal prismatic Pd_(3)L^(1)_(6)building block are reported.Significantly,they can be controllably obtained by adjusting the solute concentration during crystal growth.Specifically,the square shape crystals,α-[Pd_(3)L^(1)_(6)](PF_(6))_(12)in the cubic system with I143 m space group,can be isolated from a high-concentration solution of Pd_(3)L^(1)_(6).Interestingly,a mesoporous cage assembled from eight Pd_(3)L^(1)_(6)units with a diameter of 24Åis observed in the crystal structure.For the low-concentration solution of Pd_(3)L^(1)_(6),the rectangular shape crystalsβ-[Pd_(3)L^(1)_(6)](PF_(6))_(12)are obtained,which crystallize in the hexagonal system with P 63/m space group,and display two-dimension packing pattern and one-dimension mesoporous channels(diameter ca.22Å)along the c axis.Moreover,the two supramolecular isomers were used as nanoporous reactors to induce the specific formation of polyiodides with different compositions and shapes as evidenced from single crystal X-ray diffraction studies.These findings provide a reference in targeting functional crystalline mesoporous supramolecular materials from a single complex building unit.展开更多
The notorious shuttle effect of polyiodides in aqueous Zinc-iodine(Zn-I2)batteries impedes their practical application,which renders it imperative to address this issue.Here,we report natural gelatin as an advanced aq...The notorious shuttle effect of polyiodides in aqueous Zinc-iodine(Zn-I2)batteries impedes their practical application,which renders it imperative to address this issue.Here,we report natural gelatin as an advanced aqueous binder for iodine-loading cathode to enable stable and efficient Zn-I_(2) batteries.The positively charged region in gelatin presents electrostatic attraction to the iodine species,while the electron-rich regions could donate electrons to form physical or even covalent bonds with iodine species,thus inhibiting polyiodides shuttle effect and boosting redox reaction.A high reversible capacity of 138 mAh g^(-1) after 3000 cycles at 2C and an ultra-long cycling stability of 30000 cycles at 25C with 107 mAh g^(-1) capacity was achieved.Gelatin binder also can accommodate high iodine-loading(~10 mg)cathode,punch cells,and severe temperature conditions(-10℃ and 60℃).In-situ UV-vis absorption spectroscopy,in-situ Raman spectra and theoretical calculation revealed the critical role of gelatin binder in suppressing polyiodide shuttling and accelerating reaction kinetics.This work uncovers the potential of natural low-cost binder material in advanced Zn-I_(2) batteries and drives future study of designing functional binders.展开更多
Aqueous zinc-iodine batteries(AZIBs)have attracted significant attention as the most promising next-generation energy storage technology due to their low cost,inherent safety,and high energy density.However,their prac...Aqueous zinc-iodine batteries(AZIBs)have attracted significant attention as the most promising next-generation energy storage technology due to their low cost,inherent safety,and high energy density.However,their practical application is hindered by the poor electronic conductivity of iodine cathodes and the severe shuttling effect of intermediate polyiodides.Here,we report a novel micropores carbon framework(MCF)synthesized from waste coffee grounds via a facile carbonization-activation process.The resultant MCF features an ultrahigh specific surface area and a high density of micropores,which not only physically confine iodine species to minimize iodine loss but also enhance the electronic conductivity of the composite cathode.Furthermore,biomass-derived heteroatom dopings(nitrogen functionalities)facilitate effective chemical anchoring of polyiodide intermediates,thereby mitigating the shuttle effect.UV–visible spectroscopy and electrochemical kinetic analyses further confirm the rapid transformation and inhibition mechanism of iodine species by MCF.Consequently,the MCF/I_(2)cathode delivers superior specific capacities of 238.3 mA h g^(−1)at 0.2 A g^(−1)and maintains outstanding cycling performance with a capacity retention of 85.2%after 1200 cycles at 1.0 A g^(−1).This work not only provides an important reference for the design of high-performance iodine-host porous carbon materials but also explores new paths for the sustainable,high-value utilization of waste biomass resources.展开更多
Aqueous zinc-iodine(Zn-I_(2))batteries are promising candidates for low-cost grid-scale energy storage systems.However,the long-term stability and energy density of the Zn-I_(2)batteries are largely hindered by the la...Aqueous zinc-iodine(Zn-I_(2))batteries are promising candidates for low-cost grid-scale energy storage systems.However,the long-term stability and energy density of the Zn-I_(2)batteries are largely hindered by the lack of feasible and scalable methods that coherently suppress polyiodide shuttling and Zn dendrites growth,especially at high current densities.Herein,a flexible,thin and lightweight poly(3,4-ethy lenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)nanopaper is designed as an“anion-cation regulation”synergistic interlayer to tackle the above issues.The PEDOT:PSS interlayer exhibits a 3D nanofibrous network with uniformly distributed mesopores,abundant polar groups and intrinsic conductivity,which renders an even Zn^(2+)flux at Zn anode and facilitates homogeneous current distributions at I_(2)cathode.Meanwhile,such interlayer can act as physiochemical shield to enhance the utilization of I_(2)cathode via the coulombic repulsion and chemical adsorption effect against polyiodide shuttling.Thus,long-term dendrite-free Zn plating/stripping is achieved at simultaneous high current density and high areal capacity(550 h at 10 m A cm^(-2)/5 m Ah cm^(-2)).Zn-I_(2)batteries harvest a high capacity(230 m Ah g^(-1)at 0.1 A g^(-1))and an ultralong lifespan(>20000 cycles)even at 10 A g^(-1).This work demonstrates the potential use of the multifunctional interlayers for Zn-I_(2)battery configuration innovation by synergistic regulation of cations and anions at the electrodes/electrolyte interface.展开更多
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-...Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries.展开更多
The potential reactions between natural polysaccharides and iodine and their products have been explored for a long time. Due to the complex factors that can in?uence these reactions, a clear-cut mechanism ...The potential reactions between natural polysaccharides and iodine and their products have been explored for a long time. Due to the complex factors that can in?uence these reactions, a clear-cut mechanism has not yet been developed. Starch-iodine complexes, especially the amylose-iodine complex, are the most investigated of the polysaccharide-iodine reactions, and the study of this reaction can be used as a basis for the investigation of other polysaccharide-iodine reactions. In this paper, significant aspects of the reaction were introduced, including the influence of the polysaccharide structure on the properties of the resulting complexes, the relationship between the concentration of CaCl2 and formation of the final products, as well as the form of the polyiodides in these complexes. The interior structure and the surface morphology of the complexes were discussed, along with the progress in research related to this reaction.展开更多
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi...Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.展开更多
The dielectric properties of tetramethylammonium monoiodide and pentaiodide were investigated in broad temperature range(-150℃till+50℃).It was demonstrated that the structural organization of the polyiodide chain co...The dielectric properties of tetramethylammonium monoiodide and pentaiodide were investigated in broad temperature range(-150℃till+50℃).It was demonstrated that the structural organization of the polyiodide chain containing I...I charge-assisted halogen bonds influenced the parameters and the mechanism of electric conductivity of considered compound.The impedance spectroscopic measurements revealed that the direct current electric conductivity of pentaiodide salt is around four orders of magnitude higher than that of corresponding monoiodide.Moreover,pentaiodide demonstrates the hopping mechanism of conductivity.展开更多
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+6 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_1429)the National Key R&D Program of China(2024YFE0109200)the Fundamental Research Funds for the Central Universities(No.2024300440)Guangdong Basic and Applied Basic Research Foundation(2025A1515011098)the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)Ji'an Science and Technology Plan Project(2024H-100301)。
文摘Zn-I_(2) batteries have emerged as promising next-generation energy storage systems owing to their inherent safety,environmental compatibility,rapid reaction kinetics,and small voltage hysteresis.Nevertheless,two critical challenges,i.e.,zinc dendrite growth and polyiodide shuttle effect,severely impede their commercial viability.To conquer these limitations,this study develops a multifunctional separator fabricated from straw-derived carboxylated nanocellulose,with its negative charge density further reinforced by anionic polyacrylamide incorporation.This modification simultaneously improves the separator’s mechanical properties,ionic conductivity,and Zn^(2+)ion transfer number.Remarkably,despite its ultrathin 20μm profile,the engineered separator demonstrates exceptional dendrite suppression and parasitic reaction inhibition,enabling Zn//Zn symmetric cells to achieve impressive cycle life(>1800 h at 2 m A cm^(-2)/2 m Ah cm^(-2))while maintaining robust performance even at ultrahigh areal capacities(25 m Ah cm^(-2)).Additionally,the separator’s anionic characteristic effectively blocks polyiodide migration through electrostatic repulsion,yielding Zn-I_(2) batteries with outstanding rate capability(120.7 m Ah g^(-1)at 5 A g^(-1))and excellent cyclability(94.2%capacity retention after 10,000 cycles).And superior cycling stability can still be achieved under zinc-deficient condition and pouch cell configuration.This work establishes a new paradigm for designing high-performance zinc-based energy storage systems through rational separator engineering.
基金financially supported by the National Natural Science Foundation of China(22271103)Guangdong Provincial Basic and Applied Basic Research Foundation(2024A1515012322)+1 种基金the Postdoctoral Fund of Lianyungang City(LYG20230016)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Radioactive iodine produced from nuclear fission in power plants presents substantial environmental risks and requires effective remediation measures.Metal-organic frameworks(MOFs)containing specifically designed pore geometries with stable skeletons that allow dense packing of vip molecules are sought after for iodine capture.Here,14 new MOFs were developed through reticular chemistry for a comprehensive study of the iodine capture behavior.Remarkably,one of this family of materials,JOU-20(FeCo_(2)),exhibited an exceptional static vapor iodine uptake capacity of 3.08 g/g at 80℃and a high iodine storage density of 4.69 g/cm^(3).Significantly,single-crystal X-ray diffraction revealed the adsorbed iodine in JOU-20(FeCo_(2))forming an unusual aggregation of the giant trigonal antiprismatic polyiodide anion[I_(13)]^(−).To the best of our knowledge,this is the first time that the polyiodide[I_(13)]^(−)was structurally resolved in a crystalline framework,and it represents the most iodine-rich polyiodide species ever discovered experimentally.Combined spectroscopy and theoretical calculation methods demonstrated that nitrogen/sulfur sites and metal nodes play critical roles in stabilizing[I_(13)]^(−).This work introduces a pore partition strategy to create a confined space with specific pore geometry for the formation of unusual polyiodide[I_(13)]^(−),and multiple binding sites for stabilizing it,which significantly enhances the iodine adsorption performance of MOFs.
基金supported by the financial support from the National Research Foundation,Singapore,under its Singapore-China Joint Flagship Project(Clean Energy).
文摘Aqueous Zn-iodine batteries(ZIBs)face the formidable challenges towards practical implementation,including metal corrosion and rampant dendrite growth on the Zn anode side,and shuttle effect of polyiodide species from the cathode side.These challenges lead to poor cycle stability and severe self-discharge.From the fabrication and cost point of view,it is technologically more viable to deploy electrolyte engineering than electrode protection strategies.More importantly,a synchronous method for modulation of both cathode and anode is pivotal,which has been often neglected in prior studies.In this work,cationic poly(allylamine hydrochloride)(Pah^(+))is adopted as a low-cost dual-function electrolyte additive for ZIBs.We elaborate the synchronous effect by Pah^(+)in stabilizing Zn anode and immobilizing polyiodide anions.The fabricated Zn-iodine coin cell with Pah^(+)(ZnI_(2) loading:25 mg cm^(−2))stably cycles 1000 times at 1 C,and a single-layered 3.4 cm^(2) pouch cell(N/P ratio~1.5)with the same mass loading cycles over 300 times with insignificant capacity decay.
文摘The arylthio-substituted tetrathiafuivalenes (Ar-S-TTFs) are electron donors having three reversible states, neutral, cation radical, and dica- tion. The charge-transfer (CT) between Ar-S-TTFs (TTF1--TTF3) and iodine (12) is reported herein. TTF1--TTF3 show the CT with 12 in the CH2C12 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1--TTF3 with 12, the charged states of Ar-S-TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2--TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1-D chain of V-shaped (Is)-, and 2-D and 3-D iodine networks composed of 12 and (13)^- .
基金the National Natural Science Foundation for Distinguished Young Scholars of China(No.22025107)the National Youth Top-notch Talent Support Program of China,the Key Science and Technology Innovation Team of Shaanxi Province(Nos.2019TD-007 and 2019JLZ-02)the FM&EM International Joint Laboratory of Northwest University.
文摘Bottom-up construction of highly complex architecture from simple components remains one of the long-standing challenges in chemistry.Herein two supramolecular isomers based on large trigonal prismatic Pd_(3)L^(1)_(6)building block are reported.Significantly,they can be controllably obtained by adjusting the solute concentration during crystal growth.Specifically,the square shape crystals,α-[Pd_(3)L^(1)_(6)](PF_(6))_(12)in the cubic system with I143 m space group,can be isolated from a high-concentration solution of Pd_(3)L^(1)_(6).Interestingly,a mesoporous cage assembled from eight Pd_(3)L^(1)_(6)units with a diameter of 24Åis observed in the crystal structure.For the low-concentration solution of Pd_(3)L^(1)_(6),the rectangular shape crystalsβ-[Pd_(3)L^(1)_(6)](PF_(6))_(12)are obtained,which crystallize in the hexagonal system with P 63/m space group,and display two-dimension packing pattern and one-dimension mesoporous channels(diameter ca.22Å)along the c axis.Moreover,the two supramolecular isomers were used as nanoporous reactors to induce the specific formation of polyiodides with different compositions and shapes as evidenced from single crystal X-ray diffraction studies.These findings provide a reference in targeting functional crystalline mesoporous supramolecular materials from a single complex building unit.
基金supported by National Natural Science Foundation of China(22309029,52404316)Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515140011,and 2024A1515110010)+2 种基金Dongguan Social Development Technology Foundation(Nos.20231800907933,and 20221800905122)Collaborative Innovation Center of Marine Science and Technology of Hainan University(No.XTCX2022HYC14)Start-up Research Foundation of Hainan University(No.KYQD(ZR)-23069).
文摘The notorious shuttle effect of polyiodides in aqueous Zinc-iodine(Zn-I2)batteries impedes their practical application,which renders it imperative to address this issue.Here,we report natural gelatin as an advanced aqueous binder for iodine-loading cathode to enable stable and efficient Zn-I_(2) batteries.The positively charged region in gelatin presents electrostatic attraction to the iodine species,while the electron-rich regions could donate electrons to form physical or even covalent bonds with iodine species,thus inhibiting polyiodides shuttle effect and boosting redox reaction.A high reversible capacity of 138 mAh g^(-1) after 3000 cycles at 2C and an ultra-long cycling stability of 30000 cycles at 25C with 107 mAh g^(-1) capacity was achieved.Gelatin binder also can accommodate high iodine-loading(~10 mg)cathode,punch cells,and severe temperature conditions(-10℃ and 60℃).In-situ UV-vis absorption spectroscopy,in-situ Raman spectra and theoretical calculation revealed the critical role of gelatin binder in suppressing polyiodide shuttling and accelerating reaction kinetics.This work uncovers the potential of natural low-cost binder material in advanced Zn-I_(2) batteries and drives future study of designing functional binders.
基金financial support from the National Natural Science Foundation of China(U23B20166,U21A20289)International Joint Doctoral Education Fund of Beihang University,and Open Fund of Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau,Ministry of Education(KLBE2024001)+7 种基金Australian Research Council(ARC)through the Future Fellowship(FT210100298)Discovery Project(DP220100603)Linkage Project(LP210200504,LP220100088,LP230200897)Industrial Transformation Research Hub(IH240100009)schemesthe Australian Government through the Cooperative Research Centres Projects(CRCPXIII000077)the Australian Renewable Energy Agency(ARENA)part of ARENA’s Transformative Research Accelerating Commercialisation Program(TM021)European Commission’s Australia-Spain Network for Innovation and Research Excellence(AuSpire).
文摘Aqueous zinc-iodine batteries(AZIBs)have attracted significant attention as the most promising next-generation energy storage technology due to their low cost,inherent safety,and high energy density.However,their practical application is hindered by the poor electronic conductivity of iodine cathodes and the severe shuttling effect of intermediate polyiodides.Here,we report a novel micropores carbon framework(MCF)synthesized from waste coffee grounds via a facile carbonization-activation process.The resultant MCF features an ultrahigh specific surface area and a high density of micropores,which not only physically confine iodine species to minimize iodine loss but also enhance the electronic conductivity of the composite cathode.Furthermore,biomass-derived heteroatom dopings(nitrogen functionalities)facilitate effective chemical anchoring of polyiodide intermediates,thereby mitigating the shuttle effect.UV–visible spectroscopy and electrochemical kinetic analyses further confirm the rapid transformation and inhibition mechanism of iodine species by MCF.Consequently,the MCF/I_(2)cathode delivers superior specific capacities of 238.3 mA h g^(−1)at 0.2 A g^(−1)and maintains outstanding cycling performance with a capacity retention of 85.2%after 1200 cycles at 1.0 A g^(−1).This work not only provides an important reference for the design of high-performance iodine-host porous carbon materials but also explores new paths for the sustainable,high-value utilization of waste biomass resources.
基金supported by the Outstanding Youth Scientist Foundation of Hunan Province(Grant No.2021JJ10017)the National Natural Science Foundation of China(Grant No.52173229)。
文摘Aqueous zinc-iodine(Zn-I_(2))batteries are promising candidates for low-cost grid-scale energy storage systems.However,the long-term stability and energy density of the Zn-I_(2)batteries are largely hindered by the lack of feasible and scalable methods that coherently suppress polyiodide shuttling and Zn dendrites growth,especially at high current densities.Herein,a flexible,thin and lightweight poly(3,4-ethy lenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)nanopaper is designed as an“anion-cation regulation”synergistic interlayer to tackle the above issues.The PEDOT:PSS interlayer exhibits a 3D nanofibrous network with uniformly distributed mesopores,abundant polar groups and intrinsic conductivity,which renders an even Zn^(2+)flux at Zn anode and facilitates homogeneous current distributions at I_(2)cathode.Meanwhile,such interlayer can act as physiochemical shield to enhance the utilization of I_(2)cathode via the coulombic repulsion and chemical adsorption effect against polyiodide shuttling.Thus,long-term dendrite-free Zn plating/stripping is achieved at simultaneous high current density and high areal capacity(550 h at 10 m A cm^(-2)/5 m Ah cm^(-2)).Zn-I_(2)batteries harvest a high capacity(230 m Ah g^(-1)at 0.1 A g^(-1))and an ultralong lifespan(>20000 cycles)even at 10 A g^(-1).This work demonstrates the potential use of the multifunctional interlayers for Zn-I_(2)battery configuration innovation by synergistic regulation of cations and anions at the electrodes/electrolyte interface.
基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China,Grant/Award Number:22KJB150004Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200047+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:22209062,22222902Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China,Grant/Award Number:JSTJ-2022-023。
文摘Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries.
基金supported by the Fundamental Research Funds for the Central Universities(JC2015-03)National Natural Science Foundation of China(31470417)+1 种基金Beijing Municipal Natural Science Foundation(6182031)Author of National Excellent Doctoral Dissertations of China(201458)
文摘The potential reactions between natural polysaccharides and iodine and their products have been explored for a long time. Due to the complex factors that can in?uence these reactions, a clear-cut mechanism has not yet been developed. Starch-iodine complexes, especially the amylose-iodine complex, are the most investigated of the polysaccharide-iodine reactions, and the study of this reaction can be used as a basis for the investigation of other polysaccharide-iodine reactions. In this paper, significant aspects of the reaction were introduced, including the influence of the polysaccharide structure on the properties of the resulting complexes, the relationship between the concentration of CaCl2 and formation of the final products, as well as the form of the polyiodides in these complexes. The interior structure and the surface morphology of the complexes were discussed, along with the progress in research related to this reaction.
基金supported by the National Natural Science Foundation of China(22209006,21935001)the Natural Science Foundation of Shandong Province(ZR2022QE009)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202307)the Beijing Natural Science Foundation(Z210016).
文摘Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.
基金The Government of Russian Federation decree No.211,agreement No.02.A03.21.0011the Ministry of Education and Science of the Russian Federation.4.1157.2017/4.6.
文摘The dielectric properties of tetramethylammonium monoiodide and pentaiodide were investigated in broad temperature range(-150℃till+50℃).It was demonstrated that the structural organization of the polyiodide chain containing I...I charge-assisted halogen bonds influenced the parameters and the mechanism of electric conductivity of considered compound.The impedance spectroscopic measurements revealed that the direct current electric conductivity of pentaiodide salt is around four orders of magnitude higher than that of corresponding monoiodide.Moreover,pentaiodide demonstrates the hopping mechanism of conductivity.