Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enh...Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties.展开更多
Polyimide(PI)is widely used in high-tech fields such as microelectronics,aerospace,and national defense because of its excellent optical properties,high-and low-temperature resistance,and good dimensional stability.To...Polyimide(PI)is widely used in high-tech fields such as microelectronics,aerospace,and national defense because of its excellent optical properties,high-and low-temperature resistance,and good dimensional stability.To achieve the desired properties of PI,the monomers 2,6-diaminopyrimidin-4-ol(DAPD)and 6-(2,3,5,6-tetrafluoro-4-vinylphenoxy)pyrimidin-2,4-diamine(DAFPD),which contains crosslinkable functional groups,were designed and synthesized successfully and copolymerized with 4,4'-oxydianiline(ODA)and 4,4-hexafluoroisopropylphthalic anhydride(6FDA).The prepared PI film(PI-3),with rigid backbones and loose packing had excellent heat resistance(Td5%=489℃)and optical properties(T450=82%).Furthermore,a crosslinked PI film(c-PI-3)with more heat-resistant(Td5%=524℃)and better mechanical properties(σ=125.46MPa),can be obtained through thermal crosslinking of tetrafluorostyrene.In addition,the changes in the properties caused by the proportion of DAFPD added during copolymerization are discussed comprehensively.This study provides a promising candidate for heat-resistant PI materials.展开更多
Modified polyimides(MPIs)possess excellent thermal stability,chemical stability,and mechanical properties,and are considered to be a kind of dielectric material for high-frequency communication.Enhancing the rigidity ...Modified polyimides(MPIs)possess excellent thermal stability,chemical stability,and mechanical properties,and are considered to be a kind of dielectric material for high-frequency communication.Enhancing the rigidity of the polymer chains and intermolecular interactions can ensure low D_(k)/D_(f)at high frequency,which is attributed to the effective restriction of dipole orientations.However,it is difficult to achieve tight chain packing in an overly rigid polymer chain,whereas an overly flexible polymer chain might be insufficient to restrain small-scale molecular motions below T_(g).To balance the trade-off between the rigidity of the polymer chains and tight chain packing,MPI was developed with a rigidsoft structure based on a naphthalene-alkyl-based diamine.On the one hand,incorporating the soft unit can enhance the movability of polymer chains to achieve dense chain packing for polyimides(PIs).On the other hand,the presence of rigid aromatic units can enhance intermolecular interactions and further restrict the motion of polar imide groups below T_(g).As a result,the resultant MPI can prevent small-scale molecular motion below T_(g).In contrast to the reference PI-TFMB-6FDA,D_(k)/D_(f)is significantly reduced from 2.72/0.0075 to 2.73/0.005 at a high frequency of 10 GHz Furthermore,the rigid-soft structure endows PIs with good thermoplasticity owing to the good chain flexibility above T_(g).In addition,PIs based on rigid-soft structures can preserve favorable thermal stability.展开更多
Organo-soluble alicyclic polyimides (ALPIs) were synthesized from an alicyclic dianhydride, 1,8-dimethyl-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (DMEA) and several multialkyl-substituted 4,4'-d...Organo-soluble alicyclic polyimides (ALPIs) were synthesized from an alicyclic dianhydride, 1,8-dimethyl-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (DMEA) and several multialkyl-substituted 4,4'-diaminodiphenylmethane compounds, including 3,3'-dimethyl-4,4'-diaminodiphenyt methane (DMDA), 3,31,5,5'-tetramethyl-4,4'-diaminodiphenyl methane (TMDA) and 3,3',5,5'-tetraethyl-4,4'-diaminodiphenylmethane (TEDA). For comparison, the aromatic polyimides (ARPIs) were synthesized from the aromatic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and the same diamines. The ALPIs exhibited better solubility and transparency, but worse thermal stabilities and mechanical properties than those of the ARPIs. And the ALPIs could be dissolved in common organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), chloroform, tetrahydrofuran, m-cresol and so on. The ALPI films had an UV-Vis cut-off at 320 nm and a transmittance of higher than 80% in the visible region. In addition, the ALPIs showed thermal decomposition temperatures (T-d) of about 450degreesC, which was nearly 100degreesC lower than that of the ARPIs.展开更多
4-Aminophenylalanine(4APhe),an exotic amino acid which is obtained as a microorganism metabolite of glucose,is polycondensed with various tetracarboxylic dianhydrides as a diamine monomer to obtain poly(amic acid)s.Su...4-Aminophenylalanine(4APhe),an exotic amino acid which is obtained as a microorganism metabolite of glucose,is polycondensed with various tetracarboxylic dianhydrides as a diamine monomer to obtain poly(amic acid)s.Subsequent thermal imidization of poly(amic acid)s is made at 220°C with stepwise heating from 100°C.Some of the obtained polyimides(PIs)exhibited good solubility in organic solvents such as N,N-dimethylformamide,N.N dimethylacetamide,and more.The progress of imidization was observed by proton nuclear magnetic resonance and infrared spectroscopy to confrm that the imidization ratio was up to 98%.Carboxylate group of the side-chains of PIs affected their solubilities despite the high imidization ratio,and the solubility was lost for any organic solvents by decarboxylation at 280。C,confirmed from mass-loss of thermogravimetric analysis.Thus,a new series of PIs were obtained with abilities of solvent-molding in PI state and thermal resistivityt enhancement by further heating after molding.展开更多
Lithium-ion batteries(LIBs)have helped revolutionize the modern world and are now advancing the alternative energy field.Several technical challenges are associated with LIBs,such as increasing their energy density,im...Lithium-ion batteries(LIBs)have helped revolutionize the modern world and are now advancing the alternative energy field.Several technical challenges are associated with LIBs,such as increasing their energy density,improving their safety,and prolonging their lifespan.Pressed by these issues,researchers are striving to find effective solutions and new materials for next-generation LIBs.Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs.Polyimides(PIs),a special functional polymer,possess unparalleled advantages,such as excellent mechanical strength,extremely high thermal stability,and excellent chemical inertness;they are a promising material for LIBs.Herein,we discuss the current applications of PIs in LIBs,including coatings,separators,binders,solid-state polymer electrolytes,and active storage materials,to improve high-voltage performance,safety,cyclability,flexibility,and sustainability.Existing technical challenges are described,and strategies for solving current issues are proposed.Finally,potential directions for implementing PIs in LIBs are outlined.展开更多
The recent development of flexible display technology raised additional requirements for optical and electric properties of polyimides,accelerating the structure and property tunning of transparent polyimides.The uniq...The recent development of flexible display technology raised additional requirements for optical and electric properties of polyimides,accelerating the structure and property tunning of transparent polyimides.The unique electronic effect and steric hindrance effect of fluorine substitutions make fluorine-containing polyimides occupy an important position in the transparent polyimide family.In this work,a series of transparent aromatic polyimides were prepared from a fixed 4,4’-(hexafluoroisopropylidene)diphthalic anhydride(6FDA)and biphenyl diamines with different substitute groups at the 2,2’,6,6’-positions.We systematically studied the effects of pendant groups on the thermal,mechanical,optical and dielectric properties of these 6FDA-based polyimides with the aid of density function theory(DFT)calculation.In particular,we paid special attention to the simple but compact fluoro group substitution.The simple fluoro substitution brought the advantages of maintaining the linearity of the backbone and dense polymer chain packing,which would minimize the weakening of polyimides’inherent thermal,dimensional and mechanical properties.Comparing with trifluoromethyl substituted polyimides with the best optical transparency,polyimides containing fluoro substitutes exhibited slightly decreased optical transparency,but increased thermal and dimensional stability and higher mechanical strength.These results could shed light on the ultimate transparent polyimide film development toward the application in extreme working condition,e.g.,the colorless polyimide substrate film for the flexible display technology.展开更多
The monomer 2,6,12-triaminotriptycene was synthesized and the structure was confirmed by IR and 1H NMR spectra. Hyperbranched polyimides modified with different terminal groups were obtained from precursors, anhydride...The monomer 2,6,12-triaminotriptycene was synthesized and the structure was confirmed by IR and 1H NMR spectra. Hyperbranched polyimides modified with different terminal groups were obtained from precursors, anhydride- and aminoterminated hyperbranched poly(amic acid)s from polymerization of A2 + B3 system. From gel permeation chromatograrn (GPC) characterization, representative products had high molecular weight. All polymers had good solubility in CHCl3, DMF and tetrahydrofuran (THF), and performed no detective Tgs in the range of 50-300 ℃ and high Tds above 455 ℃ when 5% weight loss.展开更多
A kind of highly organsoluble polyimide and copolyimides were successfully synthesized from bicyclo(2.2.2)-oct- 7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), the commercial diamine 4,4'-methylenedianiline (...A kind of highly organsoluble polyimide and copolyimides were successfully synthesized from bicyclo(2.2.2)-oct- 7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), the commercial diamine 4,4'-methylenedianiline (MDA) and the designed diamine 4,4'-methylenebis-(2-tert-butylaniline) (MBTBA). The polyimide from BCDA and MBTBA is highly soluble in conventional low boiling point solvents (such as chloroform, tetrahydrofuran) at room temperature. But the solubility of the copolyimides in conventional solvents decreased with the molar ratio of MBTBA and MDA decreased. When the molar ratio of MBTBA and MDA was larger than 7/3, the copolyimides can be soluble in low boiling point solvents at room temperature to form a transparent, flexible, tough film by solution casting. When the molar ratio of MBTBA and MDA was between 7/3 and 1/9, they can only be soluble in hot dipolar aprotic solvents (such as DMF, NMP etc.) and form films too. The copolyimide was only soluble in m-cresol when the molar ratio of MBTBA and MDA was lower than 1/9. The number-average molecular weights of the soluble copolyimides were larger than 5.8 × 1064 g/mol by GPC and their polydispersity indices were higher than 1.4. Only one glass transition temperature of these copolyimides was detected around 400℃ by DMA. The copolyimides did not show appreciable decomposition up to 430℃ in N2.展开更多
Some novel polyimides containing bisthiazole rings were prepared by reacting 2,2'-diamino-4, 4'-bisthiazole (DART) with different aromatic dianhydride. The polyimides obtained had inherent viscosities of 0.37-...Some novel polyimides containing bisthiazole rings were prepared by reacting 2,2'-diamino-4, 4'-bisthiazole (DART) with different aromatic dianhydride. The polyimides obtained had inherent viscosities of 0.37-0.82 dl/g. Thermogravimetric analysis of the polyimides showed good thermal stability, the temperature at 5% weight loss being from 450 degrees to 560 degrees C. The permeability of two polymer membranes to H-2, O-2 and N-2 was determined, respectively. Three kinds of polyimide films were converted into electrical conductor by pyrolysis at high temperature in nitrogen atmosphere. The maximum room temperature conductivity as high as 3.9x10(2) S/cm for PI him pyrolyzed at 1200 degrees C for 10 min was obtained, and it was very stable in air.展开更多
A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups,3,3'-dimethyl-4,4'-diaminophenyl-3",5"-di-tert-butyltoluene,was successfully synthesized by a simple coupling reac...A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups,3,3'-dimethyl-4,4'-diaminophenyl-3",5"-di-tert-butyltoluene,was successfully synthesized by a simple coupling reaction using 3,5-di-tert-butylbenzaldehyde and o-toluidine as starting materials.A series of novel polyimides(PI 3a-3c)with large pendant groups were prepared with the obtained diamine monomer and three different commercial aromatic dianhydrides(3,3',4,4'-biphenyltetracarboxylic dianhydride,4,4'-oxydiphthalic anhydride,and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride)by one-step high temperature polycondensation.The prepared polyimides exhibited high solubility and good membrane forming ability:they could be dissolved not only in some high boiling solvents such as DMF,NMP,DMAc,and m-Cresol at room temperature,but also in some low boiling solvents such as CHCl3,CH2Cl2,and THF.Their solubility in most solvents could exceed 10 wt%,and the flexible membranes could be obtained by casting their solutions.The prepared membranes exhibited good gas separation properties.The permeability coefficients of PI 3c for CO2 and O2 were up to 124.6 and 42.8 barrer,respectively,and the selectivity coefficients for CO2/CH4 and O2/N2 were 14.7 and 3.3,respectively.The membranes had light color and good optical transmission.Their optical transmittance at 450 nm wavelength was in the range of 67%-79%,and the cutoff wavelength was in the range of 310-348 nm.They also had good thermal properties with glass transition temperature(Tg)values in the range of 264-302℃.In addition,these membranes possessed good mechanical properties with tensile strength ranging between 77.8-87.4 MPa,initial modulus ranging between 1.69-1.82 GPa,and elongation at break ranging between 4.8%-6.1%.展开更多
A novel non-coplanar aromatic diamine monomer, 3,3'-ditertbutyl-4,4'-diaminodiphenyl-4"-naphthylmethane (TAPN) was synthesized by a condensation reaction of 2-tertbutylaniline and 1-naphthaldehyde under catalyst ...A novel non-coplanar aromatic diamine monomer, 3,3'-ditertbutyl-4,4'-diaminodiphenyl-4"-naphthylmethane (TAPN) was synthesized by a condensation reaction of 2-tertbutylaniline and 1-naphthaldehyde under catalyst hydrochloric acid. The structure of the monomer was confirmed by FTIR, NMR, elementary analysis and mass spectrometry. A series of aromatic polyimides (PIs) were synthesized via conventional one-step polycondensation from TAPN and various commercial aromatic dianhydrides. All of the PIs exhibit excellent solubility in common organic solvents, even in low boiling point solvents such as chloroform (CHC13), tetrahydrofuran (THF) and acetone. The PIs present outstanding thermal stability with the glass transition temperature (Tg) ranged from 299 ℃ to 350 ℃, and the temperature at 10% weight loss ranged from 490 ℃ to 504 ℃, and high optical transparency with the cutoff wavelengths of 306-356 nm. Moreover, the flexible and tough PI films have prominent mechanical properties with tensile strengths in the range of 77.6-90.5 MPa, tensile modulus in the range of 1.8-2.4 GPa and elongation at break in the range of 6.3%-9.5%, as well as lower dielectric constant (2.89-3.12 at 1 MHz) and lower moisture absorption (0.35%-0.66%).展开更多
A family of new triphenylmethane(TPM)-based polyimides(PIs)containing bulky tert-butyldimethylsiloxy(TBS)side-groups(PI-TPMOSis)has been prepared by a post-polymerization modification via a simple silyl ether reaction...A family of new triphenylmethane(TPM)-based polyimides(PIs)containing bulky tert-butyldimethylsiloxy(TBS)side-groups(PI-TPMOSis)has been prepared by a post-polymerization modification via a simple silyl ether reaction of TPM-based PIs containing hydroxyl(OH)groups(PI-TPMOHs).The attachment of TBS side-groups in PI-TPMOSis can be achieved up to 100%,as confirmed by the 1H-NMR and IR spectra.Due to the presence of the TPM structure,PI-TPMOSi films still display the excellent thermal stability with high glass transition temperature(Tg)of 314–351°C and high degradation temperature(Td5%)of 480–501°C.It is quite remarkable that the introduction of TBS side-groups into PI-TPMOSi chains results in more superior optical,dielectric and solubility properties in comparison with the precursor PI-TPMOH films,probably due to the reductions of the packing density and charge-transfer complexes(CTCs)formation.The optical transmittance at 400 nm(T400)of PI-TPMOSi films is significantly increased from 45.3%–68.8%to 75.4%–81.6%of the precursor PI-TPMOH films.The dielectric constant(Dk)and dissipation factor(Df)at 1 MHz of PI-TPMOSi films are reduced from 4.11–4.40 and 0.00159–0.00235 to 2.61–2.92 and 0.00125–0.00171 of the precursor PI-TPMOH films,respectively.Combining the molecular design and simple preparation method,this study provides an effective approach for enhancement of various properties of PI films for microelectronic and photoelectric engineering applications.展开更多
Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,α-bis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides.The one-ste...Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,α-bis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides.The one-step polymerizationprocedure was conducted at 180℃ in m-cresol,producing the polyimides with inherent viscosities of 0.68-0.76 dL.g^(-1).Thepolyimides could be soluble not only in polar aprotic solvents,such as N-methyl-2-pyrrolidinone,and N,N-dimethylacetamide,but also in common organic solvents,such as chloroform,cyclopentanone,m-cresol and so on.Thepolyimide films show excellent transparency with the UV-Vis cut-off lengths of 310-360 nm and light transmittances ofhigher than 80% in the visible region.In addition,the polyimides exhibit good thermal stability with an initial decompositiontemperature(T_d)higher than 530℃ and have more than 60% of residual weight retentions at 700℃.展开更多
A new aromatic diamine monomer containing pyridine unit, 2,6-bis (4-aminophenoxy- 4'-benzoyl)pyridine(BABP), was synthesized in three steps, starting from 2,6-pyridinedicarboxyl chloride. A series of novel pyridi...A new aromatic diamine monomer containing pyridine unit, 2,6-bis (4-aminophenoxy- 4'-benzoyl)pyridine(BABP), was synthesized in three steps, starting from 2,6-pyridinedicarboxyl chloride. A series of novel pyridine-containing polyimides were prepared v/a the polycondensation of BABP with various aromatic dianhydrides through poly(amic acid) precursors, and thermal or chemical imidization of the precursors. The polyimides exhibit desirable properties, e.g., good solubility in N-methyl-2-pyrrolidone and m-cresol, excellent thermal stability and film-forming capability, as well as high inherent viscosity, indicating high molecular weight.展开更多
In the past ten years there has been a flurry of activity in the synthesis of new specialty polymers,largely as a result of the increased need for high technology materials. Interest is mainly shown in two distinctcat...In the past ten years there has been a flurry of activity in the synthesis of new specialty polymers,largely as a result of the increased need for high technology materials. Interest is mainly shown in two distinctcategories of polymers: a) polymers which are used in very small quantities to fulfill critical needs as a part ofdevice systems, and b) high-performance engineering polymers which significantly extend their mechanicaland thermal properties for structural applications. Polyimides and their unparalleled versatility have capturedthe attention and imagination of scientists and engineers. This article describes some of the recent work doneby the author's group on the rational design at the molecular level and the synthesis of polyimides that haveunusual structures and novel properties.展开更多
Polyimides(PI) with different side chains in structure were synthesized by copolycondensation of pyromelliticmdianhydride(PMDA) with 3,5-diamino-(4'-methane acid hexyl ester) phenyl-benzamide(C6-PDA),(4-buto...Polyimides(PI) with different side chains in structure were synthesized by copolycondensation of pyromelliticmdianhydride(PMDA) with 3,5-diamino-(4'-methane acid hexyl ester) phenyl-benzamide(C6-PDA),(4-butoxybiphenol)-3', 5'-diaminobenzoate(C4-BBDA) and 3, 5-diamino-benzoic acid decyl ester(C10-DA) named PI-PDA, PI-C4, PI-DA, respectively. The lengths of side chains of PI-PDA and PI-DA are as similar as that of PI-C4. Through the pretilt angle tests it is demonstrated that neither the structure of side chains nor the rubbing process could make an obvious difference on vertical alignment property when the lengths of the side chains are similar, standing at around 1.6 nm. The measurement of surface energy of PI surfaces further proved this result. The result of the X-ray photo-electron spectroscope measurement indicated that the side chains of PIs stretched out from the polymer bulk phase and accumulated on the surface.展开更多
A novel kind of aromatic diamine, N-(4-(4-(2,6-diphenyl pyridine-4-yl) phenoxy) phenyl)-3,5-diaminobezamide (DPDAB), was synthesized via aromatic nucleophilic substitution of 3,5-dinitrobenzoylchloride with 4-...A novel kind of aromatic diamine, N-(4-(4-(2,6-diphenyl pyridine-4-yl) phenoxy) phenyl)-3,5-diaminobezamide (DPDAB), was synthesized via aromatic nucleophilic substitution of 3,5-dinitrobenzoylchloride with 4-(4-(2,6- diphenylpyridine-4-yl)phenoxy)aniline (DPPA), followed by palladium-catalyzed hydrazine reduction. This monomer was used to prepare polyimides (PIs) based on reaction with several commerically avaiable tetracarboxylic dianhydrides such as pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acide dianhydride (BTDA) and bicycle [2.2.2] oct-7-ene- 2, 3,5,6-tetracarboxylic dianhydride (BCDA). These PIs had inherent viscosity in the range of 0.34-0.76 dL/g and showed good solubility in various aprotic polar solvents. The glass-transition tempratures (Tgs) of the PIs were in the range of 184-302℃, and showed high thermal stability with 10% weight loss in the temperature range of 360-500℃ under nitrogen atmosphere.展开更多
A green approach to the synthesis and morphological control of high performance polyimides and their nanohybrid shish-kebabs in glycerol through reaction-induced crystallization of nylon-salt-type monomers was reporte...A green approach to the synthesis and morphological control of high performance polyimides and their nanohybrid shish-kebabs in glycerol through reaction-induced crystallization of nylon-salt-type monomers was reported. Crystalline polyimide nanoplates can be observed by direct polycondensation of pyromellitic acid with various kinds of aliphatic or aromatic diamines. With the existence of carbon nanotuhes, the polyimides can be successfully decorated on the surface of CNTs through a reaction-induced hetero-epitaxial crystallization process, and resulted in novel polyimide/CNT nanohybrid shish-kebabs (NHSKs) structures. The morphologies of the NHSKs can be fine-tuned through changing the concentration of monomers or the reaction temperature, especially through the introduction of dynamic imine chemistry, the formation process of NHSKs can be attributed to a soft epitaxy mechanism. Thus a green approach for the synthesis of high performance polyimides and their CNT based nanohybrid structures was explored, which should be of great value for their applications in high performance reinforced nanocomposites.展开更多
A novel diamine 4-[(4'-butoxyphenoxy)carbonyl]phenyl-3",5"-diaminobenzoate (BCDA) was synthesized from 4-butoxyphenol, 4-hydroxybenzoic acid and 3,5-dinitrobenzoic acid through four main intermediates, and a se...A novel diamine 4-[(4'-butoxyphenoxy)carbonyl]phenyl-3",5"-diaminobenzoate (BCDA) was synthesized from 4-butoxyphenol, 4-hydroxybenzoic acid and 3,5-dinitrobenzoic acid through four main intermediates, and a series of polyimides were also synthesized. All the intermediates and the final product were characterized by FTIR and 1H-NMR. The key step in synthesis route is selective hydrolyzation of two ester groups in 4-butoxyphenyl-4'-acetoxybenzoate, by adjusting the reaction temperature and the concentration of ammonia, shorteding the reaction time. The properties of the novel polyimides, such as the aggregation structures, glass transition temperature, solubility and the pretilt angles, were carded out.展开更多
基金supported by the National Key R&D Program of China(No.2022YFB3707302)the National Natural Science Foundation of China(Nos.52394271 , 52394270).
文摘Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties.
基金supported by the National Key Research and Development Program of China(No.2022YFB3603101)。
文摘Polyimide(PI)is widely used in high-tech fields such as microelectronics,aerospace,and national defense because of its excellent optical properties,high-and low-temperature resistance,and good dimensional stability.To achieve the desired properties of PI,the monomers 2,6-diaminopyrimidin-4-ol(DAPD)and 6-(2,3,5,6-tetrafluoro-4-vinylphenoxy)pyrimidin-2,4-diamine(DAFPD),which contains crosslinkable functional groups,were designed and synthesized successfully and copolymerized with 4,4'-oxydianiline(ODA)and 4,4-hexafluoroisopropylphthalic anhydride(6FDA).The prepared PI film(PI-3),with rigid backbones and loose packing had excellent heat resistance(Td5%=489℃)and optical properties(T450=82%).Furthermore,a crosslinked PI film(c-PI-3)with more heat-resistant(Td5%=524℃)and better mechanical properties(σ=125.46MPa),can be obtained through thermal crosslinking of tetrafluorostyrene.In addition,the changes in the properties caused by the proportion of DAFPD added during copolymerization are discussed comprehensively.This study provides a promising candidate for heat-resistant PI materials.
基金supported by the National Natural Science Foundation of China(Nos.U20A20340 and 52001068)Key-Area Research and Development Program of Guangdong Province(No.2020B010182001)+3 种基金Dongguan Key Research&Development Program(No.20231200300192)Science and Technology Projects in Guangzhou(No.2025A04J3832)Foshan Introducing Innovative and Entrepreneurial Teams(No.1920001000108)Guangzhou Hongmian Project(No.HMJH-2020-0012)。
文摘Modified polyimides(MPIs)possess excellent thermal stability,chemical stability,and mechanical properties,and are considered to be a kind of dielectric material for high-frequency communication.Enhancing the rigidity of the polymer chains and intermolecular interactions can ensure low D_(k)/D_(f)at high frequency,which is attributed to the effective restriction of dipole orientations.However,it is difficult to achieve tight chain packing in an overly rigid polymer chain,whereas an overly flexible polymer chain might be insufficient to restrain small-scale molecular motions below T_(g).To balance the trade-off between the rigidity of the polymer chains and tight chain packing,MPI was developed with a rigidsoft structure based on a naphthalene-alkyl-based diamine.On the one hand,incorporating the soft unit can enhance the movability of polymer chains to achieve dense chain packing for polyimides(PIs).On the other hand,the presence of rigid aromatic units can enhance intermolecular interactions and further restrict the motion of polar imide groups below T_(g).As a result,the resultant MPI can prevent small-scale molecular motion below T_(g).In contrast to the reference PI-TFMB-6FDA,D_(k)/D_(f)is significantly reduced from 2.72/0.0075 to 2.73/0.005 at a high frequency of 10 GHz Furthermore,the rigid-soft structure endows PIs with good thermoplasticity owing to the good chain flexibility above T_(g).In addition,PIs based on rigid-soft structures can preserve favorable thermal stability.
基金This work was supported by the National Natural Science Foundation of China under the Grant for Distinguished YoungScholars (No. 59925310).
文摘Organo-soluble alicyclic polyimides (ALPIs) were synthesized from an alicyclic dianhydride, 1,8-dimethyl-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (DMEA) and several multialkyl-substituted 4,4'-diaminodiphenylmethane compounds, including 3,3'-dimethyl-4,4'-diaminodiphenyt methane (DMDA), 3,31,5,5'-tetramethyl-4,4'-diaminodiphenyl methane (TMDA) and 3,3',5,5'-tetraethyl-4,4'-diaminodiphenylmethane (TEDA). For comparison, the aromatic polyimides (ARPIs) were synthesized from the aromatic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and the same diamines. The ALPIs exhibited better solubility and transparency, but worse thermal stabilities and mechanical properties than those of the ARPIs. And the ALPIs could be dissolved in common organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), chloroform, tetrahydrofuran, m-cresol and so on. The ALPI films had an UV-Vis cut-off at 320 nm and a transmittance of higher than 80% in the visible region. In addition, the ALPIs showed thermal decomposition temperatures (T-d) of about 450degreesC, which was nearly 100degreesC lower than that of the ARPIs.
基金This work was financially supported by Japan Science and Technology Agency (JST)-Advanced Low Carbon Technology(ALCA)project UPMJAL10101.
文摘4-Aminophenylalanine(4APhe),an exotic amino acid which is obtained as a microorganism metabolite of glucose,is polycondensed with various tetracarboxylic dianhydrides as a diamine monomer to obtain poly(amic acid)s.Subsequent thermal imidization of poly(amic acid)s is made at 220°C with stepwise heating from 100°C.Some of the obtained polyimides(PIs)exhibited good solubility in organic solvents such as N,N-dimethylformamide,N.N dimethylacetamide,and more.The progress of imidization was observed by proton nuclear magnetic resonance and infrared spectroscopy to confrm that the imidization ratio was up to 98%.Carboxylate group of the side-chains of PIs affected their solubilities despite the high imidization ratio,and the solubility was lost for any organic solvents by decarboxylation at 280。C,confirmed from mass-loss of thermogravimetric analysis.Thus,a new series of PIs were obtained with abilities of solvent-molding in PI state and thermal resistivityt enhancement by further heating after molding.
基金the financial support provided by the National Natural Science Foundation of China (nos. U21A20170 [X. He], 22279070 [L. Wang], and 52206263 [Y. Song])the Ministry of Science and Technology of China (no. 2019YFA0705703 [L. Wang])the “Explorer 100” cluster system of Tsinghua National Laboratory for Information Science and Technology for their facility support
文摘Lithium-ion batteries(LIBs)have helped revolutionize the modern world and are now advancing the alternative energy field.Several technical challenges are associated with LIBs,such as increasing their energy density,improving their safety,and prolonging their lifespan.Pressed by these issues,researchers are striving to find effective solutions and new materials for next-generation LIBs.Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs.Polyimides(PIs),a special functional polymer,possess unparalleled advantages,such as excellent mechanical strength,extremely high thermal stability,and excellent chemical inertness;they are a promising material for LIBs.Herein,we discuss the current applications of PIs in LIBs,including coatings,separators,binders,solid-state polymer electrolytes,and active storage materials,to improve high-voltage performance,safety,cyclability,flexibility,and sustainability.Existing technical challenges are described,and strategies for solving current issues are proposed.Finally,potential directions for implementing PIs in LIBs are outlined.
基金financially supported by the Key-Area Research and Development Program of Guangdong Province(No.2020B010182002)the Recruitment Program of Guangdong(No.2016ZT06C322)the Major Program of National Natural Science Foundation of China(No.51890871)。
文摘The recent development of flexible display technology raised additional requirements for optical and electric properties of polyimides,accelerating the structure and property tunning of transparent polyimides.The unique electronic effect and steric hindrance effect of fluorine substitutions make fluorine-containing polyimides occupy an important position in the transparent polyimide family.In this work,a series of transparent aromatic polyimides were prepared from a fixed 4,4’-(hexafluoroisopropylidene)diphthalic anhydride(6FDA)and biphenyl diamines with different substitute groups at the 2,2’,6,6’-positions.We systematically studied the effects of pendant groups on the thermal,mechanical,optical and dielectric properties of these 6FDA-based polyimides with the aid of density function theory(DFT)calculation.In particular,we paid special attention to the simple but compact fluoro group substitution.The simple fluoro substitution brought the advantages of maintaining the linearity of the backbone and dense polymer chain packing,which would minimize the weakening of polyimides’inherent thermal,dimensional and mechanical properties.Comparing with trifluoromethyl substituted polyimides with the best optical transparency,polyimides containing fluoro substitutes exhibited slightly decreased optical transparency,but increased thermal and dimensional stability and higher mechanical strength.These results could shed light on the ultimate transparent polyimide film development toward the application in extreme working condition,e.g.,the colorless polyimide substrate film for the flexible display technology.
基金the National Natural Science Foundation(No.50673031)of China and authors would like to extend thanks to Professor Yongming Chen at CAS.
文摘The monomer 2,6,12-triaminotriptycene was synthesized and the structure was confirmed by IR and 1H NMR spectra. Hyperbranched polyimides modified with different terminal groups were obtained from precursors, anhydride- and aminoterminated hyperbranched poly(amic acid)s from polymerization of A2 + B3 system. From gel permeation chromatograrn (GPC) characterization, representative products had high molecular weight. All polymers had good solubility in CHCl3, DMF and tetrahydrofuran (THF), and performed no detective Tgs in the range of 50-300 ℃ and high Tds above 455 ℃ when 5% weight loss.
基金This work was financially supported by the National Basic Research Program (No. 2007CB808000)the Foundation of Chinese Academy of Sciences (Nos. 50633010, 50503012)the Zhejiang Provincial Natural Science Foundation of China (Nos. Y405500, Y405411)
文摘A kind of highly organsoluble polyimide and copolyimides were successfully synthesized from bicyclo(2.2.2)-oct- 7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), the commercial diamine 4,4'-methylenedianiline (MDA) and the designed diamine 4,4'-methylenebis-(2-tert-butylaniline) (MBTBA). The polyimide from BCDA and MBTBA is highly soluble in conventional low boiling point solvents (such as chloroform, tetrahydrofuran) at room temperature. But the solubility of the copolyimides in conventional solvents decreased with the molar ratio of MBTBA and MDA decreased. When the molar ratio of MBTBA and MDA was larger than 7/3, the copolyimides can be soluble in low boiling point solvents at room temperature to form a transparent, flexible, tough film by solution casting. When the molar ratio of MBTBA and MDA was between 7/3 and 1/9, they can only be soluble in hot dipolar aprotic solvents (such as DMF, NMP etc.) and form films too. The copolyimide was only soluble in m-cresol when the molar ratio of MBTBA and MDA was lower than 1/9. The number-average molecular weights of the soluble copolyimides were larger than 5.8 × 1064 g/mol by GPC and their polydispersity indices were higher than 1.4. Only one glass transition temperature of these copolyimides was detected around 400℃ by DMA. The copolyimides did not show appreciable decomposition up to 430℃ in N2.
基金This project was supported by the National Natural Science Foundation of China
文摘Some novel polyimides containing bisthiazole rings were prepared by reacting 2,2'-diamino-4, 4'-bisthiazole (DART) with different aromatic dianhydride. The polyimides obtained had inherent viscosities of 0.37-0.82 dl/g. Thermogravimetric analysis of the polyimides showed good thermal stability, the temperature at 5% weight loss being from 450 degrees to 560 degrees C. The permeability of two polymer membranes to H-2, O-2 and N-2 was determined, respectively. Three kinds of polyimide films were converted into electrical conductor by pyrolysis at high temperature in nitrogen atmosphere. The maximum room temperature conductivity as high as 3.9x10(2) S/cm for PI him pyrolyzed at 1200 degrees C for 10 min was obtained, and it was very stable in air.
基金This work was finanially supported by the Key Research Project of Jiangsu Province(No.BE2017645)Scientifc Research and Innovation Project for Graduate Students in Jiangsu Province(No.KYCX19-1757)。and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘A rigid aromatic diamine monomer containing di-tert-butylbenzene and dimethyl groups,3,3'-dimethyl-4,4'-diaminophenyl-3",5"-di-tert-butyltoluene,was successfully synthesized by a simple coupling reaction using 3,5-di-tert-butylbenzaldehyde and o-toluidine as starting materials.A series of novel polyimides(PI 3a-3c)with large pendant groups were prepared with the obtained diamine monomer and three different commercial aromatic dianhydrides(3,3',4,4'-biphenyltetracarboxylic dianhydride,4,4'-oxydiphthalic anhydride,and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride)by one-step high temperature polycondensation.The prepared polyimides exhibited high solubility and good membrane forming ability:they could be dissolved not only in some high boiling solvents such as DMF,NMP,DMAc,and m-Cresol at room temperature,but also in some low boiling solvents such as CHCl3,CH2Cl2,and THF.Their solubility in most solvents could exceed 10 wt%,and the flexible membranes could be obtained by casting their solutions.The prepared membranes exhibited good gas separation properties.The permeability coefficients of PI 3c for CO2 and O2 were up to 124.6 and 42.8 barrer,respectively,and the selectivity coefficients for CO2/CH4 and O2/N2 were 14.7 and 3.3,respectively.The membranes had light color and good optical transmission.Their optical transmittance at 450 nm wavelength was in the range of 67%-79%,and the cutoff wavelength was in the range of 310-348 nm.They also had good thermal properties with glass transition temperature(Tg)values in the range of 264-302℃.In addition,these membranes possessed good mechanical properties with tensile strength ranging between 77.8-87.4 MPa,initial modulus ranging between 1.69-1.82 GPa,and elongation at break ranging between 4.8%-6.1%.
基金financially supported by the National Natural Science Foundation of China(Nos.51163003 and 21264005)the fund of Guangxi Natural Science Foundation(Nos.2014GXNSFAA118040 and 2013GXNSFDA019008)Guangxi Funds for Specially-appointed Expert
文摘A novel non-coplanar aromatic diamine monomer, 3,3'-ditertbutyl-4,4'-diaminodiphenyl-4"-naphthylmethane (TAPN) was synthesized by a condensation reaction of 2-tertbutylaniline and 1-naphthaldehyde under catalyst hydrochloric acid. The structure of the monomer was confirmed by FTIR, NMR, elementary analysis and mass spectrometry. A series of aromatic polyimides (PIs) were synthesized via conventional one-step polycondensation from TAPN and various commercial aromatic dianhydrides. All of the PIs exhibit excellent solubility in common organic solvents, even in low boiling point solvents such as chloroform (CHC13), tetrahydrofuran (THF) and acetone. The PIs present outstanding thermal stability with the glass transition temperature (Tg) ranged from 299 ℃ to 350 ℃, and the temperature at 10% weight loss ranged from 490 ℃ to 504 ℃, and high optical transparency with the cutoff wavelengths of 306-356 nm. Moreover, the flexible and tough PI films have prominent mechanical properties with tensile strengths in the range of 77.6-90.5 MPa, tensile modulus in the range of 1.8-2.4 GPa and elongation at break in the range of 6.3%-9.5%, as well as lower dielectric constant (2.89-3.12 at 1 MHz) and lower moisture absorption (0.35%-0.66%).
基金supported by the National Natural Science Foundation of China(Nos.52203014,52103010 and 52003200)the Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515110767,2022A1515010969,2020A1515110897 and 2023A1515010999)+2 种基金the Open Fund for Key Lab of Guangdong High Property and Functional Macromolecular Materials,China(No.20220601)Guangdong Provincial Department of Education Featured Innovation Project(No.2021KTSCX138)the Science Foundation for Young Research Groups of Wuyi University(Nos.2020AL016 and 2019AL019).
文摘A family of new triphenylmethane(TPM)-based polyimides(PIs)containing bulky tert-butyldimethylsiloxy(TBS)side-groups(PI-TPMOSis)has been prepared by a post-polymerization modification via a simple silyl ether reaction of TPM-based PIs containing hydroxyl(OH)groups(PI-TPMOHs).The attachment of TBS side-groups in PI-TPMOSis can be achieved up to 100%,as confirmed by the 1H-NMR and IR spectra.Due to the presence of the TPM structure,PI-TPMOSi films still display the excellent thermal stability with high glass transition temperature(Tg)of 314–351°C and high degradation temperature(Td5%)of 480–501°C.It is quite remarkable that the introduction of TBS side-groups into PI-TPMOSi chains results in more superior optical,dielectric and solubility properties in comparison with the precursor PI-TPMOH films,probably due to the reductions of the packing density and charge-transfer complexes(CTCs)formation.The optical transmittance at 400 nm(T400)of PI-TPMOSi films is significantly increased from 45.3%–68.8%to 75.4%–81.6%of the precursor PI-TPMOH films.The dielectric constant(Dk)and dissipation factor(Df)at 1 MHz of PI-TPMOSi films are reduced from 4.11–4.40 and 0.00159–0.00235 to 2.61–2.92 and 0.00125–0.00171 of the precursor PI-TPMOH films,respectively.Combining the molecular design and simple preparation method,this study provides an effective approach for enhancement of various properties of PI films for microelectronic and photoelectric engineering applications.
基金This work was supported by the National Natural Science Foundation of China(NSFC)for distinguished Young Scholars(No.59925310).
文摘Organo-soluble fluorinated polyimides were synthesized by the polycondensation of a new aromatic diamine α,α-bis(4-amino-3,5-dimethylphenyl)-4'-fluorophenyl methane with several aromatic dianhydrides.The one-step polymerizationprocedure was conducted at 180℃ in m-cresol,producing the polyimides with inherent viscosities of 0.68-0.76 dL.g^(-1).Thepolyimides could be soluble not only in polar aprotic solvents,such as N-methyl-2-pyrrolidinone,and N,N-dimethylacetamide,but also in common organic solvents,such as chloroform,cyclopentanone,m-cresol and so on.Thepolyimide films show excellent transparency with the UV-Vis cut-off lengths of 310-360 nm and light transmittances ofhigher than 80% in the visible region.In addition,the polyimides exhibit good thermal stability with an initial decompositiontemperature(T_d)higher than 530℃ and have more than 60% of residual weight retentions at 700℃.
文摘A new aromatic diamine monomer containing pyridine unit, 2,6-bis (4-aminophenoxy- 4'-benzoyl)pyridine(BABP), was synthesized in three steps, starting from 2,6-pyridinedicarboxyl chloride. A series of novel pyridine-containing polyimides were prepared v/a the polycondensation of BABP with various aromatic dianhydrides through poly(amic acid) precursors, and thermal or chemical imidization of the precursors. The polyimides exhibit desirable properties, e.g., good solubility in N-methyl-2-pyrrolidone and m-cresol, excellent thermal stability and film-forming capability, as well as high inherent viscosity, indicating high molecular weight.
文摘In the past ten years there has been a flurry of activity in the synthesis of new specialty polymers,largely as a result of the increased need for high technology materials. Interest is mainly shown in two distinctcategories of polymers: a) polymers which are used in very small quantities to fulfill critical needs as a part ofdevice systems, and b) high-performance engineering polymers which significantly extend their mechanicaland thermal properties for structural applications. Polyimides and their unparalleled versatility have capturedthe attention and imagination of scientists and engineers. This article describes some of the recent work doneby the author's group on the rational design at the molecular level and the synthesis of polyimides that haveunusual structures and novel properties.
基金financially supported by the National Natural Science Foundation of China(Nos.50973067 and 51173115)the Ministry of Education (the Foundation for Ph.D.training,Grant No.20110181110030) of China
文摘Polyimides(PI) with different side chains in structure were synthesized by copolycondensation of pyromelliticmdianhydride(PMDA) with 3,5-diamino-(4'-methane acid hexyl ester) phenyl-benzamide(C6-PDA),(4-butoxybiphenol)-3', 5'-diaminobenzoate(C4-BBDA) and 3, 5-diamino-benzoic acid decyl ester(C10-DA) named PI-PDA, PI-C4, PI-DA, respectively. The lengths of side chains of PI-PDA and PI-DA are as similar as that of PI-C4. Through the pretilt angle tests it is demonstrated that neither the structure of side chains nor the rubbing process could make an obvious difference on vertical alignment property when the lengths of the side chains are similar, standing at around 1.6 nm. The measurement of surface energy of PI surfaces further proved this result. The result of the X-ray photo-electron spectroscope measurement indicated that the side chains of PIs stretched out from the polymer bulk phase and accumulated on the surface.
文摘A novel kind of aromatic diamine, N-(4-(4-(2,6-diphenyl pyridine-4-yl) phenoxy) phenyl)-3,5-diaminobezamide (DPDAB), was synthesized via aromatic nucleophilic substitution of 3,5-dinitrobenzoylchloride with 4-(4-(2,6- diphenylpyridine-4-yl)phenoxy)aniline (DPPA), followed by palladium-catalyzed hydrazine reduction. This monomer was used to prepare polyimides (PIs) based on reaction with several commerically avaiable tetracarboxylic dianhydrides such as pyromellatic dianhydride (PMDA), benzophenone tetracarboxylic acide dianhydride (BTDA) and bicycle [2.2.2] oct-7-ene- 2, 3,5,6-tetracarboxylic dianhydride (BCDA). These PIs had inherent viscosity in the range of 0.34-0.76 dL/g and showed good solubility in various aprotic polar solvents. The glass-transition tempratures (Tgs) of the PIs were in the range of 184-302℃, and showed high thermal stability with 10% weight loss in the temperature range of 360-500℃ under nitrogen atmosphere.
基金financially supported by the National Natural Science Foundation of China(Nos.20974069,21174089)the Ministry of Education(No.JS20091210507067)Sichuan University(No.0082204121012)
文摘A green approach to the synthesis and morphological control of high performance polyimides and their nanohybrid shish-kebabs in glycerol through reaction-induced crystallization of nylon-salt-type monomers was reported. Crystalline polyimide nanoplates can be observed by direct polycondensation of pyromellitic acid with various kinds of aliphatic or aromatic diamines. With the existence of carbon nanotuhes, the polyimides can be successfully decorated on the surface of CNTs through a reaction-induced hetero-epitaxial crystallization process, and resulted in novel polyimide/CNT nanohybrid shish-kebabs (NHSKs) structures. The morphologies of the NHSKs can be fine-tuned through changing the concentration of monomers or the reaction temperature, especially through the introduction of dynamic imine chemistry, the formation process of NHSKs can be attributed to a soft epitaxy mechanism. Thus a green approach for the synthesis of high performance polyimides and their CNT based nanohybrid structures was explored, which should be of great value for their applications in high performance reinforced nanocomposites.
基金We are grateful for the financial support from the National Natural Science Foundation of China(No,50433010)Doctoral Fund of Ministry of Eduction of China(No.20040610028),
文摘A novel diamine 4-[(4'-butoxyphenoxy)carbonyl]phenyl-3",5"-diaminobenzoate (BCDA) was synthesized from 4-butoxyphenol, 4-hydroxybenzoic acid and 3,5-dinitrobenzoic acid through four main intermediates, and a series of polyimides were also synthesized. All the intermediates and the final product were characterized by FTIR and 1H-NMR. The key step in synthesis route is selective hydrolyzation of two ester groups in 4-butoxyphenyl-4'-acetoxybenzoate, by adjusting the reaction temperature and the concentration of ammonia, shorteding the reaction time. The properties of the novel polyimides, such as the aggregation structures, glass transition temperature, solubility and the pretilt angles, were carded out.