Conjugated microporous polymers(CMPs)have attracted considerable attention as potential organic anode materials for sodium-ion batteries(SIBs)due to their flexible chemical structure,high porosity,environmental friend...Conjugated microporous polymers(CMPs)have attracted considerable attention as potential organic anode materials for sodium-ion batteries(SIBs)due to their flexible chemical structure,high porosity,environmental friendliness,and cost effectiveness.However,the inherent shortcomings of organic electrodes,such as low conductivity,high solubility in electrolyte,narrow material utilization,etc.,limit their further development.In this work,we successfully prepared a novel porous polyimide PPD containing multicarbonyl active centers via the polycondensation of pyromellitic dianhydride(PMDA)and2,6-diaminoanthraquinone(DAAQ).The stable conjugated structure and multiple redox centers give the polymer high reversible specific capacity(244.6 m Ah/g after 100 cycles at 100 m A/g),ultra-long cycle stability(100.7 m Ah/g after 2000 cycles at 1.0 A/g),and predominant rate capability.Meanwhile,the sodium storage mechanism of the electrode materials during the charging and discharging process is investigated by ex-situ XPS/FTIR analysis.Due to the exceptional electrochemical properties and simple synthesis method,this work may shed light on the preparation of polyimide-based anodes for high specific capacity and rate capability secondary batteries.展开更多
Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enh...Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties.展开更多
Oxygen plasma source generated by thermal cathode filament discharge has been used to study the erosion process of polyim- ide (PI) materials in atomic oxygen (AO) environment, and their mass loss, surface morphol...Oxygen plasma source generated by thermal cathode filament discharge has been used to study the erosion process of polyim- ide (PI) materials in atomic oxygen (AO) environment, and their mass loss, surface morphology and surface chemical composi- tions have been examined by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) after exposure to incremental AO flux. The data indicate that the physical adsorption of AO at the samples' surface results in the increase of oxygen concentration when polyimide is exposed to AO flux. Then selective chemical reactions of groups of polyimide materials with AO yield volatile organic compounds, sample mass loss is on linear increase and carpet-like surface morphology forms. In the initial exposure to AO, the reaction occurs mainly between AO and carbon in specific location of aromatic ring, then the re- action rate of C=O groups gradually increases. After AO exposure, the oxygen concentration increases while nitrogen and carbon concentration decreases. Reaction rate of groups containing nitrogen is slower compared with carbon and oxygen.展开更多
The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on th...The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on the polyimide/polydimethylsiloxane(PI/PDMS)composite exhibits a naturally high stretchabil-ity(over 30%),bypassing the transfer printing process compared to the one prepared by laser scribing onPI films.The PI/PDMS composite with LIG shows tunable mechanical and electronic performances withdifferent PI particle concentrations in PDMS.The good cyclic stability and almost linear response of theprepared LIG’s resistance with respect to tensile strain provide its access to wearable electronics.To im-prove the PDMS/PI composite stretchability,we designed and optimized a kirigami-inspired strain sensorwith LIG on the top surface,dramatically increasing the maximum strain value that in linear response toapplied strain from 3%to 79%.展开更多
High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)m...High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)membranes doped with barium titanate(BTO)nanoparticles and multi-walled carbon nanotubes(MWCNTs).The piezoelectric BTO nanoparticles were incorporated to boost the electric outputs by the synergistic effect of piezoelectricity and triboelectricity and MWCNTs were incorporated to provide a microcapacitor structure for enhancing the performance of TENGs.When the mass fraction of the BTO nanoparticle was 10%and the mass fraction of the MWCNT was 0.1%,the corresponding TENG achieved optimum electric outputs(an open-circuit voltage of around 65 V,a short-circuit current of about 20.0μA and a transferred charge of about 25.0 nC),much higher than those of the TENG with a single PI membrane.The TENG is potentially used to supply energy for commercial light-emitting diodes and as self-powered sensors to monitor human physical training conditions.This research provides a guideline for developing TENGs with high performance,which is crucial for their long-term use.展开更多
基金supported by National Natural Science Foundation,China(Nos.52071132,U21A20284 and 52261135632)Natural Science Foundation of Henan,China(Nos.232300421080,242300421035)+2 种基金Program for Innovative Team(in Science and Technology)in University of Henan Province,China(No.24IRTSTHN006)Key Scientific Research Programs in Universities of Henan Province,China–Special Projects for Basic Research(No.23ZX008)the Natural Science Foundation of Hunan Province,China(No.2023JJ50287)。
文摘Conjugated microporous polymers(CMPs)have attracted considerable attention as potential organic anode materials for sodium-ion batteries(SIBs)due to their flexible chemical structure,high porosity,environmental friendliness,and cost effectiveness.However,the inherent shortcomings of organic electrodes,such as low conductivity,high solubility in electrolyte,narrow material utilization,etc.,limit their further development.In this work,we successfully prepared a novel porous polyimide PPD containing multicarbonyl active centers via the polycondensation of pyromellitic dianhydride(PMDA)and2,6-diaminoanthraquinone(DAAQ).The stable conjugated structure and multiple redox centers give the polymer high reversible specific capacity(244.6 m Ah/g after 100 cycles at 100 m A/g),ultra-long cycle stability(100.7 m Ah/g after 2000 cycles at 1.0 A/g),and predominant rate capability.Meanwhile,the sodium storage mechanism of the electrode materials during the charging and discharging process is investigated by ex-situ XPS/FTIR analysis.Due to the exceptional electrochemical properties and simple synthesis method,this work may shed light on the preparation of polyimide-based anodes for high specific capacity and rate capability secondary batteries.
基金supported by the National Key R&D Program of China(No.2022YFB3707302)the National Natural Science Foundation of China(Nos.52394271 , 52394270).
文摘Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties.
基金Aerospace Science and Technology Innovation Fund (CASC0505)
文摘Oxygen plasma source generated by thermal cathode filament discharge has been used to study the erosion process of polyim- ide (PI) materials in atomic oxygen (AO) environment, and their mass loss, surface morphology and surface chemical composi- tions have been examined by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) after exposure to incremental AO flux. The data indicate that the physical adsorption of AO at the samples' surface results in the increase of oxygen concentration when polyimide is exposed to AO flux. Then selective chemical reactions of groups of polyimide materials with AO yield volatile organic compounds, sample mass loss is on linear increase and carpet-like surface morphology forms. In the initial exposure to AO, the reaction occurs mainly between AO and carbon in specific location of aromatic ring, then the re- action rate of C=O groups gradually increases. After AO exposure, the oxygen concentration increases while nitrogen and carbon concentration decreases. Reaction rate of groups containing nitrogen is slower compared with carbon and oxygen.
基金from the National Natural ScienceFoundation of China(Grant No.12072030).
文摘The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on the polyimide/polydimethylsiloxane(PI/PDMS)composite exhibits a naturally high stretchabil-ity(over 30%),bypassing the transfer printing process compared to the one prepared by laser scribing onPI films.The PI/PDMS composite with LIG shows tunable mechanical and electronic performances withdifferent PI particle concentrations in PDMS.The good cyclic stability and almost linear response of theprepared LIG’s resistance with respect to tensile strain provide its access to wearable electronics.To im-prove the PDMS/PI composite stretchability,we designed and optimized a kirigami-inspired strain sensorwith LIG on the top surface,dramatically increasing the maximum strain value that in linear response toapplied strain from 3%to 79%.
基金National Natural Science Foundation of China(No.52103267)。
文摘High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)membranes doped with barium titanate(BTO)nanoparticles and multi-walled carbon nanotubes(MWCNTs).The piezoelectric BTO nanoparticles were incorporated to boost the electric outputs by the synergistic effect of piezoelectricity and triboelectricity and MWCNTs were incorporated to provide a microcapacitor structure for enhancing the performance of TENGs.When the mass fraction of the BTO nanoparticle was 10%and the mass fraction of the MWCNT was 0.1%,the corresponding TENG achieved optimum electric outputs(an open-circuit voltage of around 65 V,a short-circuit current of about 20.0μA and a transferred charge of about 25.0 nC),much higher than those of the TENG with a single PI membrane.The TENG is potentially used to supply energy for commercial light-emitting diodes and as self-powered sensors to monitor human physical training conditions.This research provides a guideline for developing TENGs with high performance,which is crucial for their long-term use.