Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to p...Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to prevent degradation and side reactions.In the contribution,histidine N-thiocarboxyanhydride(His-NTA)is directly synthesized in aqueous solution without protection.With the self-catalysis of the imidazole side group,the ring-closing reaction to form His-NTA does not require any activating reagent(e.g.,phosphorus tribromide),which is elucidated by density functional theory(DFT)calculations.His-NTA directly polymerizes into PHis bearing unprotected imidazole groups with designable molecular weights(4.2-7.7 kg/mol)and low dispersities(1.10-1.19).Kinetic experiments and Monte Carlo simulations reveal the elementary reactions and the relationship between the conversion of His-NTA and time during polymerization.Block copolymerization of His-NTA with sarcosine N-thiocarboxyanhydride(Sar-NTA)demonstrate versatile construction of functional polypept(o)ides.The triblock copoly(amino acid)PHis-b-PSar-b-PHis is capable to reversibly coordinate with transition metal ions(Fe^(2+),Co^(2+),Ni^(2+),Cu^(2+)and Zn^(2+))to form pH-sensitive hydrogels.展开更多
We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots.A hexahistidine peptidyl sequence was generated by standar...We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots.A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker.The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule.Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination.In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction,the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm.As thiol groups occur naturally in proteins,can be engineered into cloned proteins,inserted into nascent peptides or added to DNA during synthesis,the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22271252 and 22201105)。
文摘Consisting of natural histidine residues,polyhistidine(PHis)simulates functional proteins.Traditional approaches towards PHis require the protection of imidazole groups before monomer synthesis and polymerization to prevent degradation and side reactions.In the contribution,histidine N-thiocarboxyanhydride(His-NTA)is directly synthesized in aqueous solution without protection.With the self-catalysis of the imidazole side group,the ring-closing reaction to form His-NTA does not require any activating reagent(e.g.,phosphorus tribromide),which is elucidated by density functional theory(DFT)calculations.His-NTA directly polymerizes into PHis bearing unprotected imidazole groups with designable molecular weights(4.2-7.7 kg/mol)and low dispersities(1.10-1.19).Kinetic experiments and Monte Carlo simulations reveal the elementary reactions and the relationship between the conversion of His-NTA and time during polymerization.Block copolymerization of His-NTA with sarcosine N-thiocarboxyanhydride(Sar-NTA)demonstrate versatile construction of functional polypept(o)ides.The triblock copoly(amino acid)PHis-b-PSar-b-PHis is capable to reversibly coordinate with transition metal ions(Fe^(2+),Co^(2+),Ni^(2+),Cu^(2+)and Zn^(2+))to form pH-sensitive hydrogels.
基金The authors acknowledge Stephen Lee and Ilya Elashvilli of the CB Directorate/Physical S&T Division(DTRA),ONR,NRL,and the NRLNSI for financial support.
文摘We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots.A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker.The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule.Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination.In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction,the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm.As thiol groups occur naturally in proteins,can be engineered into cloned proteins,inserted into nascent peptides or added to DNA during synthesis,the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.