Waste polyethylene packaging (WPE) was used to modify asphalt, and hot storage stability of the modified asphalt was studied in this paper. The morphological change and component loss of WPE modified asphalt were ch...Waste polyethylene packaging (WPE) was used to modify asphalt, and hot storage stability of the modified asphalt was studied in this paper. The morphological change and component loss of WPE modified asphalt were characterized by fluorescence microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetry (TG) and isolation testing. In addition, the mechanism of the hot storage stability of WPE modified asphalt was discussed. The results showed that the modification of asphalt with WPE was a physical process. It was found that the filament or partly network-like structure formed in the modified asphalt system was beneficial to improving the hot storage stability. Moreover, the addition of WPE resulted in a decrease in both the light components volatilization and the macromolecules decomposition of asphalt. It was demonstrated that when the content of WPE in matrix asphalt was less than 10 wt%, the service performances of modified asphalt could be better.展开更多
Waste packaging polyethylene(WPE) was used to modify raw asphalt by melt blending the components at 190 ℃ for 1 h in a simple mixer and subsequently machining them at 120 ℃ for 1 h in a highspeed shearing machine....Waste packaging polyethylene(WPE) was used to modify raw asphalt by melt blending the components at 190 ℃ for 1 h in a simple mixer and subsequently machining them at 120 ℃ for 1 h in a highspeed shearing machine.The effect of modification on the degree of the penetration,the softening point and the ductility of the asphalt was studied using fluorescent microscopy,infrared spectrometry,component changes and various other techniques.The experimental results showed that no chemical reactions took place in the components themselves(saturate,aromatic,asphaltene and resin) during the modifications.The softening point and penetration of the asphalt were found to be closely related to the resulting contents of the asphaltene,saturate and resin components.In addition,aromatics were identified as having the greatest impact on the ductility of the asphalt.展开更多
基金support provided by the National Natural Science Foundation of China(Grant Nos. 51002118 and 51172180)Shaanxi Programs for Science and Technology Development(2011)+1 种基金Xi'an Programs for Industrial Applications(Grant No.CXY1129-3)the Beilin District Programs for Science and Technology Development(Grant No. GX1109)
文摘Waste polyethylene packaging (WPE) was used to modify asphalt, and hot storage stability of the modified asphalt was studied in this paper. The morphological change and component loss of WPE modified asphalt were characterized by fluorescence microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetry (TG) and isolation testing. In addition, the mechanism of the hot storage stability of WPE modified asphalt was discussed. The results showed that the modification of asphalt with WPE was a physical process. It was found that the filament or partly network-like structure formed in the modified asphalt system was beneficial to improving the hot storage stability. Moreover, the addition of WPE resulted in a decrease in both the light components volatilization and the macromolecules decomposition of asphalt. It was demonstrated that when the content of WPE in matrix asphalt was less than 10 wt%, the service performances of modified asphalt could be better.
基金Funded in part by the National Natural Science Foundation of China(Nos.51172180 and 51372200)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-1045)+1 种基金the Local Service Program of Shaanxi Provincial Education Department(No.2013JC19)the Excellent Ph D Dissertation Foundation of XAUT(102-211208)
文摘Waste packaging polyethylene(WPE) was used to modify raw asphalt by melt blending the components at 190 ℃ for 1 h in a simple mixer and subsequently machining them at 120 ℃ for 1 h in a highspeed shearing machine.The effect of modification on the degree of the penetration,the softening point and the ductility of the asphalt was studied using fluorescent microscopy,infrared spectrometry,component changes and various other techniques.The experimental results showed that no chemical reactions took place in the components themselves(saturate,aromatic,asphaltene and resin) during the modifications.The softening point and penetration of the asphalt were found to be closely related to the resulting contents of the asphaltene,saturate and resin components.In addition,aromatics were identified as having the greatest impact on the ductility of the asphalt.