Temperature-accelerated in vitro degradation was established to estimate the longevity of polyurethane applied for long-term implantation.However,the prediction did not correlate well with the data from clinical expla...Temperature-accelerated in vitro degradation was established to estimate the longevity of polyurethane applied for long-term implantation.However,the prediction did not correlate well with the data from clinical explants and the rationality of accelerated in vitro test is still in a controversial due to the deviation.To improve the accuracy of the in vitro prediction,the influence of hydrogen bonding(HB)on the accelerated hydrolysis of silicone based polyetherurethans(SPEUs)extended with three side chains.Combining the temperature-controlled FTIR and the physical properties after temperature-accelerated in vitro degradation,it was demonstrated that side chain could increase the degree of hydrogen bond dissociation at higher temperature,resulting in the decrease of the calculated activation energy(E_(a))of hydrolysis.At low temperatures,changes in surface morphology and molar mass of PEUs are minimal and HB are less easily dissociated,which had barely impact on the hydrolysis resistance.It was proposed that the E_(a) will not be impacted and that the accuracy of prediction will be increased if the acceleration temperature is lower than 70℃ and HB change is less than 15%.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51973134)the State Key Research Development Program of China(No.2020YFC1107000)+1 种基金the NSAF(No.U1930204)Interdisciplinary Innovation Projects of West China Hospital of Stomatology Sichuan University(No.RD-03-202001)。
文摘Temperature-accelerated in vitro degradation was established to estimate the longevity of polyurethane applied for long-term implantation.However,the prediction did not correlate well with the data from clinical explants and the rationality of accelerated in vitro test is still in a controversial due to the deviation.To improve the accuracy of the in vitro prediction,the influence of hydrogen bonding(HB)on the accelerated hydrolysis of silicone based polyetherurethans(SPEUs)extended with three side chains.Combining the temperature-controlled FTIR and the physical properties after temperature-accelerated in vitro degradation,it was demonstrated that side chain could increase the degree of hydrogen bond dissociation at higher temperature,resulting in the decrease of the calculated activation energy(E_(a))of hydrolysis.At low temperatures,changes in surface morphology and molar mass of PEUs are minimal and HB are less easily dissociated,which had barely impact on the hydrolysis resistance.It was proposed that the E_(a) will not be impacted and that the accuracy of prediction will be increased if the acceleration temperature is lower than 70℃ and HB change is less than 15%.