A new type of alkali-soluble polyester/cotton blended yarns was used to knit a compact knitted fabric on a circular weft knitting machine,treated with 5 g/L NaOH solution for 60 min at a temperature of 100℃,and the p...A new type of alkali-soluble polyester/cotton blended yarns was used to knit a compact knitted fabric on a circular weft knitting machine,treated with 5 g/L NaOH solution for 60 min at a temperature of 100℃,and the polyester was completely dissolved.The dissolved polyester could be polymerized again by a polycondensation reaction.After the cotton fibers were opened and combed,the length and mechanical properties of the cotton fibers were tested.The physical and mechanical properties of the separated cotton fibers were good.The chemical structure and crystallinity were analyzed by Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)analysis.It could be seen that the chemical structure of cotton fibers was almost unchanged after treatment,and the crystallinity decreased slightly.It provides some reference for the separation and recycling of waste polyester/cotton fabrics.展开更多
The denim woven by cotton and grooved polyester fiber (Coolcool) is desized by amylase and scouring enzyme. The technological parameters are discussed,such as concentrations of amylase and compound enzyme HK,time,temp...The denim woven by cotton and grooved polyester fiber (Coolcool) is desized by amylase and scouring enzyme. The technological parameters are discussed,such as concentrations of amylase and compound enzyme HK,time,temperature,and pH value. The technical conditions are optimized through experimental analysis. This eco-finishing process is very helpful to improve the denim production and the performance of moisture absorption and sweat transmission function.展开更多
Chemical modification of polymers represents a pivotal method for achieving functionalized polymer materials.However,due to the lack of post-functional handle,the chemical modification of polyester materials remains a...Chemical modification of polymers represents a pivotal method for achieving functionalized polymer materials.However,due to the lack of post-functional handle,the chemical modification of polyester materials remains a significant challenge.Ring-opening copolymerization of cyclic anhydride and epoxides is a powerful approach to synthesize polyesters.In this work,we for the first time demonstrate the functionalizability of polyesters synthesized with brominated anhydride monomers.The post-functionalization is amenable to a wide variety of reactive groups and reactions with high yields.With multiple well-established functionalization pathways of brominated polyester materials and optimized the conditions for the modification reactions,a series of functionalized polyester materials can be obtained with high yields,providing new insights for the research about functionalization of polymers.展开更多
The asymmetric alternating copolymerization of meso-epoxide and cyclic anhydrides provides an efficient access to enantiopure polyesters.Contrary to the extensive investigation of the stereochemistry resulting from ep...The asymmetric alternating copolymerization of meso-epoxide and cyclic anhydrides provides an efficient access to enantiopure polyesters.Contrary to the extensive investigation of the stereochemistry resulting from epoxide building block,the chirality from anhydride and the configurational match with epoxide remain elusive.Herein,we discover that the bimetallic chromium catalysts have led to an obvious enhancement in terms of reactivity and enantioselectivity for the asymmetric copolymerization of meso-epoxide with various non-symmetric chiral anhydrides.Up to 97%ee was obtained during the asymmetric copolymerization of cyclohexene oxide(CHO)with(R)-methylsuccinic anhydride(R-MSA),and three-or four-carbon chiral centers were simultaneously installed in the aliphatic polyester backbone.In particular,the different combinations of stereochemistry in epoxide and anhydride building blocks considerably affect the thermal properties and crystalline behaviors of the resulting polyesters.This study uncovers an interesting method for regulating polymer crystallinity via matching the chirality of different monomers.展开更多
To enhance the properties of bio-based polyesters,enabling them to more closely mimic the characteristics of terephthalate-based materials,a series of aliphatic-aromatic copolyesters(P_(1)–P_(4))were synthesized via ...To enhance the properties of bio-based polyesters,enabling them to more closely mimic the characteristics of terephthalate-based materials,a series of aliphatic-aromatic copolyesters(P_(1)–P_(4))were synthesized via melt polycondensation.Diester monomers M and N were synthesized via the Williamson reaction,using lignin-derived 2-methoxyhydroquinone,methyl 4-chloromethylbenzoate,and methyl chloroacetate as starting materials.Hydroquinone bis(2-hydroxyethyl)ether(HQEE)and 1,4-cyclohexanedimethanol(CHDM)were employed as cyclic segments,while 1,4-butanediol(BDO)and 1,6-hexanediol(HDO)served as alkyl segments within the copolymer structures.The novel copolyesters exhibited molecular weights(Mw)in the range of 5.25×10^(4)–5.87×10^(4) g/mol,with polydispersity indices spanning from 2.50–2.66.Evaluation of the structural and thermomechanical properties indicated that the inclusion of alkyl segments induced a reduction in both crystallinity and molecular weight,while significantly improving the flexibility,whereas cyclic segments enhanced the processability of the copolyesters.Copolyesters P_(1) and P_(2),due to the presence of rigid segments(HQEE and CHDM),displayed relatively high glass transition temperatures(Tg>80℃)and melting temperatures(Tm>170℃).Notably,P_(2),incorporating CHDM,exhibited superior elongation properties(272%),attributed to the enhanced chain mobility resulting from its trans-conformation,while P_(1) was found to be likely brittle owing to excessive chain stiffness.Biodegradability assessment using earthworms as bioindicators revealed that the copolyesters demonstrated moderate degradation profiles,with P_(2) exhibiting a degradation rate of 4.82%,followed by P_(4) at 4.07%,P_(3) at 3.65%,and P_(1) at 3.17%.The higher degradation rate of P_(2) was attributed to its relatively larger d-spacing and lower toxicity,which facilitated enzymatic hydrolytic attack by microorganisms.These findings highlight the significance of optimizing the structural chain segments within aliphatic-aromatic copolyesters.By doing so,it is possible to significantly enhance their properties and performance,offering viable bio-based alternatives to petroleum-based polyesters such as polyethylene terephthalate(PET).展开更多
The thermotropic liquid crystal polyester(TLCP)fiber is an increasingly important strategic high-performance fiber.In this paper,the TLCP was prepared by two-step melt polymerization using 4-hydroxybenzoic acid(HBA)an...The thermotropic liquid crystal polyester(TLCP)fiber is an increasingly important strategic high-performance fiber.In this paper,the TLCP was prepared by two-step melt polymerization using 4-hydroxybenzoic acid(HBA)and 6-hydroxy-2-naphthoic acid(HNA)as comonomers at a molar ratio of 7∶3.The structure of TLCP was confirmed by the Fourier transform infrared(FTIR)spectrometer and nuclear magnetic resonance(NMR)spectrometer.The thermal and rheological properties of TLCP before and after heat treatment were analyzed systematically by the differential scanning calorimeter(DSC),dynamic mechanical analyzer(DMA)and high-temperature rotational rheometer.The results revealed that the melting temperature,glass transition temperature and melt viscosity of the TLCP increased significantly after heat treatment.It indicates that the crystallization of the TLCP is perfect,and solid-phase condensation occurs during heat treatment,which increases its molecular mass.In conclusion,heat treatment at a temperature below but close to the melting temperature can effectively regulate the structure and properties of the TLCP,and the results of this study can provide a reference for the high strengthening of TLCP fibers.展开更多
Renewable 2,5-furandicarboxylic acid-based polyesters are one of the most promising materials for achieving plastic replacement in the age of energy and environmental crisis.However,their properties still cannot compe...Renewable 2,5-furandicarboxylic acid-based polyesters are one of the most promising materials for achieving plastic replacement in the age of energy and environmental crisis.However,their properties still cannot compete with those of petrochemical-based plastics,owing to insufficient molecular and/or microstructure designs.Herein,we utilize the Ti_(3)C_(2)T_(x)-based MXene nanosheets for decorating carbon nanotube(CNT)and obtaining the structurally stable and highly dispersed dendritic heterostructured MXene@CNT,that can act as multi-roles,i.e.,polycondensation catalyst,crystal nucleator,and interface enhancer of polyester.The biobased MXene@CNT/polybutylene furandicarboxylate(PBF)(denoted as MCP)nanocomposites are synthesized by the strategy of“in situ catalytic polymerization and hot-pressing”.Benefiting from the multi-scale interactions(i.e.,covalent bonds,hydrogen bonds,and physical interlocks)in hybrid structure,the MCP presents exceptional mechanical strength(≈101 MPa),stiffness(≈3.1 GPa),toughness(≈130 MJ m^(-3)),and barrier properties(e.g.,O_(2)0.0187 barrer,CO_(2)0.0264 barrer,and H2O 1.57×10^(-14) g cm cm^(-2) s Pa)that are higher than most reported bio-based materials and engineering plastics.Moreover,it also displays satisfactory multifunctionality with high reprocessability(90%strength retention after 5 recycling),UV resistance(blocking 85%UVA rays),and solvent-resistant properties.As a state-of-art high-performance and multifunctional material,the novel bio-based MCP nanocomposite offers a more sustainable alternative to petrochemical-based plastics in packaging and engineering material fields.More importantly,our catalysis-interfacial strengthening integration strategy opens a door for designing and constructing high-performance bio-based polyester materials in future.展开更多
Polyester/cotton(PET/C)blended fabric wastes are produced daily in huge amounts,which constitutes an economic loss and an environmental threat if it is not reused appropriately.Modern textile waste recycling technolog...Polyester/cotton(PET/C)blended fabric wastes are produced daily in huge amounts,which constitutes an economic loss and an environmental threat if it is not reused appropriately.Modern textile waste recycling technologies put much effort into developing fabric materials with unique properties,such as bioactivity or new optical goods based on modern technologies,especially nano-biotechnology.In this study,zinc oxide nanoparticles(ZnO-NPs)were biosynthesized using the aqueous extract of Dunaliella sp.and immobilized on PET/C waste fabrics after enzymatically activated with cellulases.The produced Dunaliella-ZnO-NPs(10–20 nm with a spherical shape)were characterized by High-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectroscopy(FTIR),X-Ray diffraction analysis(XRD),and Scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDAX),and some functional groups,such as CH,CO,NH,and CN(due to the presence of carboxyl,proteins and hydroxyl groups),were detected,revealing the biosynthesis of ZnO-NPs.The analysis showed that the resulting ZnO-NPS had potent antimicrobial effects,Ultraviolet(UV)protection capabilities,and no cytotoxic effects on the normal human fibroblast cell line(BJ1).On the other hand,enzymatic treatments of PET/C fabric waste with cellulases enhanced the immobilization of biosynthetic nanoparticles on their surface.Modified PET/C fabrics loaded with Dunaliella-ZnO-NPs showed antibacterial and UV protection capabilities making them an eco-friendly and cost-effective candidate for numerous applications.These applications can include the manufacture of active packaging devices,wastewater treatment units,and many other environmental applications.展开更多
The use of the four new synthesized polyurethane acrylate binders in the pigment print paste for screen printing cotton and polyester fabrics and pigment fixation through the polymerization process of the binder by us...The use of the four new synthesized polyurethane acrylate binders in the pigment print paste for screen printing cotton and polyester fabrics and pigment fixation through the polymerization process of the binder by using the thermofixation technique as well as the UV curing technique was studied. The effect of changing time and temperature of thermofixation, and the time of UV curing on the color strength, and prints fastness properties were also studied. The results showed that, the newly synthesized polyurethane acrylate binders could be successfully used for pigment fixation on cotton and polyester using the two fixation techniques and in general their prints possessed better color strength values as compared to those obtained upon using the selected commercial binders.展开更多
L-glutamic acid(LA)is a bio-based,non-toxic,environmentally friendly material derived from biomass.The present study reports the application of Passerini three-component polymerization(P-3CP)for the straightforward pr...L-glutamic acid(LA)is a bio-based,non-toxic,environmentally friendly material derived from biomass.The present study reports the application of Passerini three-component polymerization(P-3CP)for the straightforward preparation of LA-based light-responsive polyesters(PLTDs)under mild conditions.PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90%are obtained.The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible(UV-Vis)spectroscopy,size exclusion chromatography(SEC),nuclear magnetic resonance(NMR)spectroscopy,and liquid chromatography mass spectrometry(LC-MS).Meanwhile,monodisperse PLTD-based doxorubicin-loaded nanoparticles(PLTD-DOX-NP)(size=193 nm,PDI=0.018)are formulated by nanoprecipitation method.Upon light-induced depolymerization,the PLTD-DOX-NP undergoes rapid decomposition,resulting in a burst release of 80%cargo within 13 s.Furthermore,according to biological toxicity tests,the PLTD-NP possesses adequate biosafety,both before and after irradiation.Overall,the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry,significantly simplifying the synthetic pathway of light-responsive polymers.展开更多
Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics...Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.展开更多
Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled ...Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation.展开更多
Background Cotton crop is infested by numerous arthropod pests from sowing to harvesting,causing substantial direct and indirect yield losses.Knowledge of seasonal population trends and the relative occurrence of pest...Background Cotton crop is infested by numerous arthropod pests from sowing to harvesting,causing substantial direct and indirect yield losses.Knowledge of seasonal population trends and the relative occurrence of pests and their natural enemies is required to minimize the pest population and yield losses.In the current study,analysis of the seasonal population trend of pests and natural enemies and their relative occurrence on cultivars of three cotton species in Central India has been carried out.Results A higher number and diversity of sucking pests were observed during the vegetative cotton growth stage(60 days after sowing),declining as the crop matured.With the exception of cotton jassid(Amrasca biguttula biguttula Ishida),which caused significant crop damage mainly from August to September;populations of other sucking insects seldom reached economic threshold levels(ETL)throughout the studied period.The bollworm complex populations were minimal,except for the pink bollworm(Pectinophora gossypiella Saunders),which re-emerged as a menace to cotton crops during the cotton cropping season 2017–2018 due to resistance development against Bt-cotton.A reasonably good number of predatory arthropods,including coccinellids,lacewings,and spiders,were found actively preying on the arthropod pest complex of the cotton crop during the early vegetative growth stage.Linear regression indicates a significant relationship between green boll infestations and pink bollworm moths in pheromone traps.Multiple linear regression analyse showed mean weekly weather at one-or two-week lag periods had a significant impact on sucking pest population(cotton aphid,cotton jassid,cotton whitefly,and onion thrips)fluctuation.Gossypium hirsutum cultivars RCH 2 and DCH 32,and G.barbadense cultivar Suvin were found susceptible to cotton jassid and onion thrips.Phule Dhanvantary,an G.arboreum cotton cultivar,demonstrated the highest tolerance among all evaluated cultivars against all sucking pests.Conclusion These findings have important implications for pest management in cotton crops.Susceptible cultivars warrant more attention for plant protection measures,making them more input-intensive.The choice of appropriate cultivars can help minimize input costs,thereby increasing net returns for cotton farmers.展开更多
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile...The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing.展开更多
The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fi...The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
The early-maturing cotton planting area in northern Xinjiang is a significant high-quality cotton production region in China.The screening and identification of early-maturing cotton germplasm resources are essential ...The early-maturing cotton planting area in northern Xinjiang is a significant high-quality cotton production region in China.The screening and identification of early-maturing cotton germplasm resources are essential for the selection and breeding of early-maturing machine-picked cotton varieties,thereby facilitating the development of high-quality early-maturing machine-picked cotton materials.In this study,19 self-fertilized early-maturing materials were screened and identified.Among these,the varieties G15 and G9 were selected based on their superior overall traits.Notably,the G9 variety exhibited exceptional early-maturing characteristics,with a reproductive period of 116 d.展开更多
文摘A new type of alkali-soluble polyester/cotton blended yarns was used to knit a compact knitted fabric on a circular weft knitting machine,treated with 5 g/L NaOH solution for 60 min at a temperature of 100℃,and the polyester was completely dissolved.The dissolved polyester could be polymerized again by a polycondensation reaction.After the cotton fibers were opened and combed,the length and mechanical properties of the cotton fibers were tested.The physical and mechanical properties of the separated cotton fibers were good.The chemical structure and crystallinity were analyzed by Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)analysis.It could be seen that the chemical structure of cotton fibers was almost unchanged after treatment,and the crystallinity decreased slightly.It provides some reference for the separation and recycling of waste polyester/cotton fabrics.
文摘The denim woven by cotton and grooved polyester fiber (Coolcool) is desized by amylase and scouring enzyme. The technological parameters are discussed,such as concentrations of amylase and compound enzyme HK,time,temperature,and pH value. The technical conditions are optimized through experimental analysis. This eco-finishing process is very helpful to improve the denim production and the performance of moisture absorption and sweat transmission function.
基金financially supported by the National Key R&D Program of China(No.2021YFA1501700)the Science and Technology Development Plan of Jilin Province(Nos.20230101042JC and 20210201059GX)+1 种基金the National Natural Science Foundation of China,Basic Science Center Program(No.51988102)the National Natural Science Foundation of China(Nos.52203017 and 52073272)。
文摘Chemical modification of polymers represents a pivotal method for achieving functionalized polymer materials.However,due to the lack of post-functional handle,the chemical modification of polyester materials remains a significant challenge.Ring-opening copolymerization of cyclic anhydride and epoxides is a powerful approach to synthesize polyesters.In this work,we for the first time demonstrate the functionalizability of polyesters synthesized with brominated anhydride monomers.The post-functionalization is amenable to a wide variety of reactive groups and reactions with high yields.With multiple well-established functionalization pathways of brominated polyester materials and optimized the conditions for the modification reactions,a series of functionalized polyester materials can be obtained with high yields,providing new insights for the research about functionalization of polymers.
基金financially supported by the National Natural Science Foundation of China(Nos.22071016 and 21920102006)。
文摘The asymmetric alternating copolymerization of meso-epoxide and cyclic anhydrides provides an efficient access to enantiopure polyesters.Contrary to the extensive investigation of the stereochemistry resulting from epoxide building block,the chirality from anhydride and the configurational match with epoxide remain elusive.Herein,we discover that the bimetallic chromium catalysts have led to an obvious enhancement in terms of reactivity and enantioselectivity for the asymmetric copolymerization of meso-epoxide with various non-symmetric chiral anhydrides.Up to 97%ee was obtained during the asymmetric copolymerization of cyclohexene oxide(CHO)with(R)-methylsuccinic anhydride(R-MSA),and three-or four-carbon chiral centers were simultaneously installed in the aliphatic polyester backbone.In particular,the different combinations of stereochemistry in epoxide and anhydride building blocks considerably affect the thermal properties and crystalline behaviors of the resulting polyesters.This study uncovers an interesting method for regulating polymer crystallinity via matching the chirality of different monomers.
基金financially supported by State Administration of Foreign Experts Affairs(SAFEA)through the High-End Foreign Expert Program(No.BG2021227001)postdoctoral funding from Wuhan University of Science and Technology(No.105008701)。
文摘To enhance the properties of bio-based polyesters,enabling them to more closely mimic the characteristics of terephthalate-based materials,a series of aliphatic-aromatic copolyesters(P_(1)–P_(4))were synthesized via melt polycondensation.Diester monomers M and N were synthesized via the Williamson reaction,using lignin-derived 2-methoxyhydroquinone,methyl 4-chloromethylbenzoate,and methyl chloroacetate as starting materials.Hydroquinone bis(2-hydroxyethyl)ether(HQEE)and 1,4-cyclohexanedimethanol(CHDM)were employed as cyclic segments,while 1,4-butanediol(BDO)and 1,6-hexanediol(HDO)served as alkyl segments within the copolymer structures.The novel copolyesters exhibited molecular weights(Mw)in the range of 5.25×10^(4)–5.87×10^(4) g/mol,with polydispersity indices spanning from 2.50–2.66.Evaluation of the structural and thermomechanical properties indicated that the inclusion of alkyl segments induced a reduction in both crystallinity and molecular weight,while significantly improving the flexibility,whereas cyclic segments enhanced the processability of the copolyesters.Copolyesters P_(1) and P_(2),due to the presence of rigid segments(HQEE and CHDM),displayed relatively high glass transition temperatures(Tg>80℃)and melting temperatures(Tm>170℃).Notably,P_(2),incorporating CHDM,exhibited superior elongation properties(272%),attributed to the enhanced chain mobility resulting from its trans-conformation,while P_(1) was found to be likely brittle owing to excessive chain stiffness.Biodegradability assessment using earthworms as bioindicators revealed that the copolyesters demonstrated moderate degradation profiles,with P_(2) exhibiting a degradation rate of 4.82%,followed by P_(4) at 4.07%,P_(3) at 3.65%,and P_(1) at 3.17%.The higher degradation rate of P_(2) was attributed to its relatively larger d-spacing and lower toxicity,which facilitated enzymatic hydrolytic attack by microorganisms.These findings highlight the significance of optimizing the structural chain segments within aliphatic-aromatic copolyesters.By doing so,it is possible to significantly enhance their properties and performance,offering viable bio-based alternatives to petroleum-based polyesters such as polyethylene terephthalate(PET).
基金National Key Research and Development Program of China (No.2021YFB3700105)。
文摘The thermotropic liquid crystal polyester(TLCP)fiber is an increasingly important strategic high-performance fiber.In this paper,the TLCP was prepared by two-step melt polymerization using 4-hydroxybenzoic acid(HBA)and 6-hydroxy-2-naphthoic acid(HNA)as comonomers at a molar ratio of 7∶3.The structure of TLCP was confirmed by the Fourier transform infrared(FTIR)spectrometer and nuclear magnetic resonance(NMR)spectrometer.The thermal and rheological properties of TLCP before and after heat treatment were analyzed systematically by the differential scanning calorimeter(DSC),dynamic mechanical analyzer(DMA)and high-temperature rotational rheometer.The results revealed that the melting temperature,glass transition temperature and melt viscosity of the TLCP increased significantly after heat treatment.It indicates that the crystallization of the TLCP is perfect,and solid-phase condensation occurs during heat treatment,which increases its molecular mass.In conclusion,heat treatment at a temperature below but close to the melting temperature can effectively regulate the structure and properties of the TLCP,and the results of this study can provide a reference for the high strengthening of TLCP fibers.
基金financial supports from the National Natural Science Foundation of China(Grant No.NSFC52473104)National Key R&D Program of China(Grant No.2022YFC2104500)+3 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.Y24B040002)Ningbo 2025 Key Scientific Research Programs(Grant No.2022Z160)the China Postdoctoral Science Foundation(Grant No.2023M733601)the Ningbo Natural Science Foundation(Grant No.2023I333&2023J409).
文摘Renewable 2,5-furandicarboxylic acid-based polyesters are one of the most promising materials for achieving plastic replacement in the age of energy and environmental crisis.However,their properties still cannot compete with those of petrochemical-based plastics,owing to insufficient molecular and/or microstructure designs.Herein,we utilize the Ti_(3)C_(2)T_(x)-based MXene nanosheets for decorating carbon nanotube(CNT)and obtaining the structurally stable and highly dispersed dendritic heterostructured MXene@CNT,that can act as multi-roles,i.e.,polycondensation catalyst,crystal nucleator,and interface enhancer of polyester.The biobased MXene@CNT/polybutylene furandicarboxylate(PBF)(denoted as MCP)nanocomposites are synthesized by the strategy of“in situ catalytic polymerization and hot-pressing”.Benefiting from the multi-scale interactions(i.e.,covalent bonds,hydrogen bonds,and physical interlocks)in hybrid structure,the MCP presents exceptional mechanical strength(≈101 MPa),stiffness(≈3.1 GPa),toughness(≈130 MJ m^(-3)),and barrier properties(e.g.,O_(2)0.0187 barrer,CO_(2)0.0264 barrer,and H2O 1.57×10^(-14) g cm cm^(-2) s Pa)that are higher than most reported bio-based materials and engineering plastics.Moreover,it also displays satisfactory multifunctionality with high reprocessability(90%strength retention after 5 recycling),UV resistance(blocking 85%UVA rays),and solvent-resistant properties.As a state-of-art high-performance and multifunctional material,the novel bio-based MCP nanocomposite offers a more sustainable alternative to petrochemical-based plastics in packaging and engineering material fields.More importantly,our catalysis-interfacial strengthening integration strategy opens a door for designing and constructing high-performance bio-based polyester materials in future.
基金supported by the program of the science,technology and innovation funding authority(STDF),Egypt under Grant No.43447.
文摘Polyester/cotton(PET/C)blended fabric wastes are produced daily in huge amounts,which constitutes an economic loss and an environmental threat if it is not reused appropriately.Modern textile waste recycling technologies put much effort into developing fabric materials with unique properties,such as bioactivity or new optical goods based on modern technologies,especially nano-biotechnology.In this study,zinc oxide nanoparticles(ZnO-NPs)were biosynthesized using the aqueous extract of Dunaliella sp.and immobilized on PET/C waste fabrics after enzymatically activated with cellulases.The produced Dunaliella-ZnO-NPs(10–20 nm with a spherical shape)were characterized by High-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectroscopy(FTIR),X-Ray diffraction analysis(XRD),and Scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDAX),and some functional groups,such as CH,CO,NH,and CN(due to the presence of carboxyl,proteins and hydroxyl groups),were detected,revealing the biosynthesis of ZnO-NPs.The analysis showed that the resulting ZnO-NPS had potent antimicrobial effects,Ultraviolet(UV)protection capabilities,and no cytotoxic effects on the normal human fibroblast cell line(BJ1).On the other hand,enzymatic treatments of PET/C fabric waste with cellulases enhanced the immobilization of biosynthetic nanoparticles on their surface.Modified PET/C fabrics loaded with Dunaliella-ZnO-NPs showed antibacterial and UV protection capabilities making them an eco-friendly and cost-effective candidate for numerous applications.These applications can include the manufacture of active packaging devices,wastewater treatment units,and many other environmental applications.
文摘The use of the four new synthesized polyurethane acrylate binders in the pigment print paste for screen printing cotton and polyester fabrics and pigment fixation through the polymerization process of the binder by using the thermofixation technique as well as the UV curing technique was studied. The effect of changing time and temperature of thermofixation, and the time of UV curing on the color strength, and prints fastness properties were also studied. The results showed that, the newly synthesized polyurethane acrylate binders could be successfully used for pigment fixation on cotton and polyester using the two fixation techniques and in general their prints possessed better color strength values as compared to those obtained upon using the selected commercial binders.
基金This work was financially supported by the International Science and Technology Assistance Program of the Ministry of Science and Technology(No.KY202001016)Shandong Provincial Natural Science Foundation Magnitude Fundamental Research,China(No.ZR2022ZD11)Qingdao New Energy Shandong Laboratory Open Project(No.QNESL OP202312).
文摘L-glutamic acid(LA)is a bio-based,non-toxic,environmentally friendly material derived from biomass.The present study reports the application of Passerini three-component polymerization(P-3CP)for the straightforward preparation of LA-based light-responsive polyesters(PLTDs)under mild conditions.PLTDs with molar masses up to 8500 g/mol and high yields exceeding 90%are obtained.The chemical structures and light-responsive self-immolative behavior of PLTDs are comprehensively characterized by employing ultraviolet-visible(UV-Vis)spectroscopy,size exclusion chromatography(SEC),nuclear magnetic resonance(NMR)spectroscopy,and liquid chromatography mass spectrometry(LC-MS).Meanwhile,monodisperse PLTD-based doxorubicin-loaded nanoparticles(PLTD-DOX-NP)(size=193 nm,PDI=0.018)are formulated by nanoprecipitation method.Upon light-induced depolymerization,the PLTD-DOX-NP undergoes rapid decomposition,resulting in a burst release of 80%cargo within 13 s.Furthermore,according to biological toxicity tests,the PLTD-NP possesses adequate biosafety,both before and after irradiation.Overall,the incorporation of P-3CP with biorenewable LA-based monomer adheres to the principles of green chemistry,significantly simplifying the synthetic pathway of light-responsive polymers.
文摘Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.
基金supported by the Science and Technology Program of Xinjiang Construction Corps(No.2024AB064)the National Natural Science Foundation of China(Nos.41975044,42001314)。
文摘Climate change is significantly impacting cotton production in the Tarim River Basin.The study investigated the climate change characteristics from 2021 to 2100 using climate change datasets simulated per the coupled model inter-comparison project phase six(CMIP6)climatic patterns under the shared socioeconomic pathways SSP2-4.5 and SSP5-8.5.The DSSAT-CROPGROCotton model,along with stepwise multiple regression analyses,was used to simulate changes in the potential yield of seed cotton due to climate change.The results show that while future temperatures in the Tarim River Basin will rise significantly,changes in precipitation and radiation during the cotton-growing season are minimal.Seed cotton yields are more sensitive to low temperatures than to precipitation and radiation.The potential yield of seed cotton under the SSP2-4.5 scenario would increase by 14.8%,23.7%,29.0%,and 29.4%in the 2030S,2050S,2070S,and 2090S,respectively.In contrast,under the SSP5-8.5 scenario,the potential yield of seed cotton would see increases of 17.5%,27.1%,30.1%,and 22.6%,respectively.Except for the 2090s under the SSP5-8.5 scenario,future seed cotton production can withstand a 10%to 20%deficit in irrigation.These findings will help develop climate change adaptation strategies for cotton cultivation.
基金Funding support for the Crop Pest Surveillance and Advisory Project(CROPSAP)。
文摘Background Cotton crop is infested by numerous arthropod pests from sowing to harvesting,causing substantial direct and indirect yield losses.Knowledge of seasonal population trends and the relative occurrence of pests and their natural enemies is required to minimize the pest population and yield losses.In the current study,analysis of the seasonal population trend of pests and natural enemies and their relative occurrence on cultivars of three cotton species in Central India has been carried out.Results A higher number and diversity of sucking pests were observed during the vegetative cotton growth stage(60 days after sowing),declining as the crop matured.With the exception of cotton jassid(Amrasca biguttula biguttula Ishida),which caused significant crop damage mainly from August to September;populations of other sucking insects seldom reached economic threshold levels(ETL)throughout the studied period.The bollworm complex populations were minimal,except for the pink bollworm(Pectinophora gossypiella Saunders),which re-emerged as a menace to cotton crops during the cotton cropping season 2017–2018 due to resistance development against Bt-cotton.A reasonably good number of predatory arthropods,including coccinellids,lacewings,and spiders,were found actively preying on the arthropod pest complex of the cotton crop during the early vegetative growth stage.Linear regression indicates a significant relationship between green boll infestations and pink bollworm moths in pheromone traps.Multiple linear regression analyse showed mean weekly weather at one-or two-week lag periods had a significant impact on sucking pest population(cotton aphid,cotton jassid,cotton whitefly,and onion thrips)fluctuation.Gossypium hirsutum cultivars RCH 2 and DCH 32,and G.barbadense cultivar Suvin were found susceptible to cotton jassid and onion thrips.Phule Dhanvantary,an G.arboreum cotton cultivar,demonstrated the highest tolerance among all evaluated cultivars against all sucking pests.Conclusion These findings have important implications for pest management in cotton crops.Susceptible cultivars warrant more attention for plant protection measures,making them more input-intensive.The choice of appropriate cultivars can help minimize input costs,thereby increasing net returns for cotton farmers.
基金supported in part by the Six Talent Peaks Project in Jiangsu Province under Grant 013040315in part by the China Textile Industry Federation Science and Technology Guidance Project under Grant 2017107+1 种基金in part by the National Natural Science Foundation of China under Grant 31570714in part by the China Scholarship Council under Grant 202108320290。
文摘The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing.
文摘The bursting strength is an essential quality parameter of knit fabric. The fabric structure, weight, types of fibers, and fiber blend proportion influence the bursting strength parameter. The tenacity of polyester fiber is better than cotton and spandex. The study focused on predicting knit fabric bursting strength test value using different fibers (cotton, polyester, and spandex) with varying percentages of the blend ratio. This study used fifteen categories of blended fabrics. The Pearson Correlation and the hypothetical ANOVA regression analysis were conducted to do the statistical significance test. The experimental result reveals that the bursting strength test result increased with the increased percentage of polyester and suggested a suitable regression equation. The dominance of the polyester fiber was observed throughout the experiment, i.e., the higher the polyester blend proportion, the higher the bursting strength value. The inclusion of polyester in blends can reduce the cost of fabric. The developed prediction model or equation can help the fabric manufacturer make appropriate decisions regarding getting the expected bursting strength. The researcher hopes that the findings from this study will motivate new researchers, advanced researchers, and the textile manufacturing industry.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
基金Supported by Major Project of Agricultural Biological Breeding(2024AB001)Germplasm Resource Innovation of Early-maturing Machine-picked Cotton in the Northern Xinjiang(2023RC04)New Germplasm Creation and Variety Selection and Application of Early-maturing and Anti-stress Machine-picked Cotton(2021NY01).
文摘The early-maturing cotton planting area in northern Xinjiang is a significant high-quality cotton production region in China.The screening and identification of early-maturing cotton germplasm resources are essential for the selection and breeding of early-maturing machine-picked cotton varieties,thereby facilitating the development of high-quality early-maturing machine-picked cotton materials.In this study,19 self-fertilized early-maturing materials were screened and identified.Among these,the varieties G15 and G9 were selected based on their superior overall traits.Notably,the G9 variety exhibited exceptional early-maturing characteristics,with a reproductive period of 116 d.