The structural and histochemical changes of the egg apparatus in the polyembryonic rice ( Oryza sativa L.), ApⅢ with the highest frequence of additional embryos among the polyembryonic rice investigated, before an...The structural and histochemical changes of the egg apparatus in the polyembryonic rice ( Oryza sativa L.), ApⅢ with the highest frequence of additional embryos among the polyembryonic rice investigated, before and after fertilization were studied and compared with those of normal and other polyembryonic rices in a similar developmental period. A total of 2 932 ovules were observed and each of them contained only a single embryo sac with a set of egg apparatus. Among 1 655 embryo sacs, there were 1 643 embryo sacs (99.27%) with one normal egg apparatus in each embryo sac, and only 12 embryo sacs (0.73%) from the remainder with 4_celled egg apparatus, i.e. two eggs and two synergids. Neither the numerous poly_egg apparatus and egg_like cells, nor the double set of embryo sacs each containing one egg apparatus and other abnormal egg apparatus in single ovary, which were reported by earlier investigators to have high frequency of embryo production in SB_1 and ApⅣ, were observed. The egg cell was located at the subterminal site of the micropylar end of embryo sac. The cytoplasm of egg cell was rich in protein materials and polysaccharide grains, which did not disappear until the division of zygote. The prominent nucleus was closely surrounded by protein and polysaccharide grains, which did not disappear until the division of zygote. No cytological difference was found between egg cells from the normal and abnormal egg apparatus. The two synergids were fully developed and situated at the upper most part of the micropylar end of the mature embryo sac. In most embryo sacs, the synergids were flask_shaped with longer necks, and a widened cap_shaped top, in close contact with the micropyle. The synergids had a well developed filiform apparatus. The characteristic appearance of the filiform apparatus as well as the cap_neck region of synergids before and after pollen tube penetration were easily distinguishable from the egg cell. The structure, the stainability with Coomassie Brilliant Blue and PAS reaction, the process of accumulation, distribution and disapperance of the cytoplasmic protein materials and polysaccharide grains of the two synergids, the persistent and rarely the receptive synergids before and after pollen tube penetration, were closely similar to those of egg cell of the same developmental stage. In comparison with normal and other polyembryonic rice reported, the size of nucleus and nucleolus and their stainability also strongly resembled those of egg cell. Based on the results observed, the main conclusions are summarized as follows: (1) the additional embryos very frequently developed in the young and mature seed of polyembryonic rice ApⅢ were produced by one or two synergids of normal egg apparatus, rarely by 4_celled egg apparatus; (2) during fertilization, the synergids, in addition to the natural specific function of introducing pollen tube and transferring sperms to egg cell and central cell, could be closely associated with the potentiality to breed one or two additional embryos; and (3) as compared with that of normal or other polyembryonic rice it is firstly disclosed that in a few embryo sacs of ApⅢ, the cytoplasmic and nuclear structure, the active anabolism and catabolism of protein and polysaccharide materials and the delayed disorganization at the mid_basal region of the receptive and persistent synergid still remained unchanged before the division of zygote. Such salient features could be the predisposition for the origin of additional embryos in ApⅢ.展开更多
In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line ...In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IRB6-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IRB6-4X plants. 2) The polyembryonic trait of IRB6-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double Jet of embryo sacs in a single owry, antipodal cells or endosperm cells. These results suggest that IRB6-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.展开更多
文摘The structural and histochemical changes of the egg apparatus in the polyembryonic rice ( Oryza sativa L.), ApⅢ with the highest frequence of additional embryos among the polyembryonic rice investigated, before and after fertilization were studied and compared with those of normal and other polyembryonic rices in a similar developmental period. A total of 2 932 ovules were observed and each of them contained only a single embryo sac with a set of egg apparatus. Among 1 655 embryo sacs, there were 1 643 embryo sacs (99.27%) with one normal egg apparatus in each embryo sac, and only 12 embryo sacs (0.73%) from the remainder with 4_celled egg apparatus, i.e. two eggs and two synergids. Neither the numerous poly_egg apparatus and egg_like cells, nor the double set of embryo sacs each containing one egg apparatus and other abnormal egg apparatus in single ovary, which were reported by earlier investigators to have high frequency of embryo production in SB_1 and ApⅣ, were observed. The egg cell was located at the subterminal site of the micropylar end of embryo sac. The cytoplasm of egg cell was rich in protein materials and polysaccharide grains, which did not disappear until the division of zygote. The prominent nucleus was closely surrounded by protein and polysaccharide grains, which did not disappear until the division of zygote. No cytological difference was found between egg cells from the normal and abnormal egg apparatus. The two synergids were fully developed and situated at the upper most part of the micropylar end of the mature embryo sac. In most embryo sacs, the synergids were flask_shaped with longer necks, and a widened cap_shaped top, in close contact with the micropyle. The synergids had a well developed filiform apparatus. The characteristic appearance of the filiform apparatus as well as the cap_neck region of synergids before and after pollen tube penetration were easily distinguishable from the egg cell. The structure, the stainability with Coomassie Brilliant Blue and PAS reaction, the process of accumulation, distribution and disapperance of the cytoplasmic protein materials and polysaccharide grains of the two synergids, the persistent and rarely the receptive synergids before and after pollen tube penetration, were closely similar to those of egg cell of the same developmental stage. In comparison with normal and other polyembryonic rice reported, the size of nucleus and nucleolus and their stainability also strongly resembled those of egg cell. Based on the results observed, the main conclusions are summarized as follows: (1) the additional embryos very frequently developed in the young and mature seed of polyembryonic rice ApⅢ were produced by one or two synergids of normal egg apparatus, rarely by 4_celled egg apparatus; (2) during fertilization, the synergids, in addition to the natural specific function of introducing pollen tube and transferring sperms to egg cell and central cell, could be closely associated with the potentiality to breed one or two additional embryos; and (3) as compared with that of normal or other polyembryonic rice it is firstly disclosed that in a few embryo sacs of ApⅢ, the cytoplasmic and nuclear structure, the active anabolism and catabolism of protein and polysaccharide materials and the delayed disorganization at the mid_basal region of the receptive and persistent synergid still remained unchanged before the division of zygote. Such salient features could be the predisposition for the origin of additional embryos in ApⅢ.
基金supported by National Key Projects of China(No.2001BA302B)
文摘In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IRB6-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IRB6-4X plants. 2) The polyembryonic trait of IRB6-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double Jet of embryo sacs in a single owry, antipodal cells or endosperm cells. These results suggest that IRB6-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.