期刊文献+
共找到39,018篇文章
< 1 2 250 >
每页显示 20 50 100
Functionally graded materials based on porous poly(ionic liquid)s:Design strategies and applications
1
作者 Xiao-Yu Han Si-Hua Liu +1 位作者 Su-Yun Zhang Jian-Ke Sun 《Chinese Journal of Structural Chemistry》 2025年第7期86-102,共17页
Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), mer... Functionally graded materials (FGMs) are innovative materials distinguished by gradual variations in composition and structure, offering exceptional properties for diverse applications. Poly(ionic liquid)s (PILs), merging the characteristics of polymers and ionic liquids, have emerged as viable options for the development of FGMs given their tunable skeleton, ionic conductivity, and compatibility with various functional materials. This review highlights the latest advancements in the design strategies of FGMs based on porous PILs, focusing on single and multi-gradient structures. Furthermore, we also highlight their emerging applications in molecular recognition, sensing, adsorption, separation, and catalysis. By exploring the interplay between porosity, ionic functionality, and gradient architecture, this review offers perspectives on the prospects of PIL-based FGMs for tackling global challenges in energy, environment, and healthcare. 展开更多
关键词 Functionally graded materials poly(ionic liquid)s Membranes Bio-inspired materials SENSING
原文传递
Facile construction of heterogeneous dual-ionic poly(ionic liquid)s for efficient and mild conversion of CO_(2)into cyclic carbonates
2
作者 Guanqun Xie Jiaxiang Qiu +5 位作者 Huadeng Li Hongbin Luo Shuo Li Yanbin Zeng Ke Zheng Xiaoxia Wang 《Journal of Environmental Sciences》 2025年第3期177-187,共11页
In the context of peaking carbon dioxide emissions and carbon neutrality,development of feasible methods for converting CO_(2)into high value-added chemicals stands out as a hot subject.In this study,P[D+COO^(−)][Br^(... In the context of peaking carbon dioxide emissions and carbon neutrality,development of feasible methods for converting CO_(2)into high value-added chemicals stands out as a hot subject.In this study,P[D+COO^(−)][Br^(−)][DBUH^(+)],a series of novel heterogeneous dual-ionic poly(ionic liquid)s(PILs)were synthesized readily from 2-(dimethylamino)ethyl methacrylate(DMAEMA),bromo-substituted aliphatic acids,organic bases and divinylbenzene(DVB).The structures,compositions and morphologies were characterized or determined by nuclear magnetic resonance(NMR),thermal gravimetric analysis(TGA),infrared spectroscopy(IR),scanning electron microscopes(SEM),and Brunauer-Emmett-Teller analysis(BET),etc.Application of the P[D+COO^(−)][Br^(−)][DBUH^(+)]series as catalysts in converting CO_(2)into cyclic carbonates showed that P[D+COO^(−)][Br^(−)][DBUH^(+)]-2/1/0.6was able to catalyze epiclorohydrin-CO_(2)cycloaddition the most efficiently.This afforded chloropropylene carbonate(CPC)in 98.4%yield with≥99%selectivity in 24 hr under solvent-and additive-free conditions at atmospheric pressure.Reusability experiments showed that recycling of the catalyst 6 times only resulted in a slight decline in the catalytic performance.In addition,it could be used for the synthesis of a variety of differently substituted cyclic carbonates in good to excellent yields.Finally,key catalytic active sites were probed,and a reasonable mechanism was proposed accordingly.In summary,this work poses an efficient strategy for heterogenization of dual-ionic PILs and provides amild and environmentally benign approach to the fixation and utilization of carbon dioxide. 展开更多
关键词 Dual-ionic poly(ionic liquid)s CO_(2)cycloaddition EPOXIDES Cyclic carbonates Heterogeneous catalysts
原文传递
Performance Enhancement of Aquivion-based Ionic Polymer Metal Composites for Cylindrical Actuators
3
作者 Xiaojie Tong Min Yu +3 位作者 Guoxiao Yin Yuwei Wu Chengbo Tian Gengying Wang 《Journal of Bionic Engineering》 2025年第1期1-11,共11页
As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine... As a kind of ionic artificial muscle material,Ionic Polymer-Metal Composites(IPMCs)have the advantages of a low drive current,light weight,and significant flexibility.IPMCs are widely used in the fields of biomedicine,soft robots,etc.However,the displacement and blocking force of the traditional sheet-type Nafion-IPMC need to be improved,and it has the limitation of unidirectional actuation.In this paper,a new type of short side chain Aquivion material is used as the polymer in the IPMC.The cylindrical IPMC is prepared by extrusion technology to improve its actuation performance and realize multi-degree-of-freedom motion.In comparison to the traditional Nafion-IPMC,the ion exchange capacity,specific capacitance,and conductivity of Aquivion-IPMC are improved by 28%,27%,and 32%,respectively,and the displacement and blocking force are improved by 57%and 25%,respectively.The cylindrical actuators can be deflected in eight directions.This indicates that Aquivion,as a polymer membrane for IPMC,holds significant application potential.By designing a cylindrical IPMC electrode distribution,the multi-degree-of-freedom deflection of IPMC can be realized. 展开更多
关键词 ionic polymer-metal composite Equivalent weight Aquivion NAFION Actuation performance
在线阅读 下载PDF
Ionic Electroactive Polymers as Renewable Materials and Their Actuators:A Review
4
作者 Tarek Dayyoub Mikhail Zadorozhnyy +6 位作者 Dmitriy G.Ladokhin Emil Askerov Ksenia V.Filippova Lidiia D.Iudina Elizaveta Iushina Dmitry V.Telyshev Aleksey Maksimkin 《Journal of Renewable Materials》 2025年第7期1267-1292,共26页
The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high effic... The development of actuators based on ionic polymers as soft robotics,artificial muscles,and sensors is currently considered one of the most urgent topics.They are lightweight materials,in addition to their high efficiency,and they can be controlled by a low power source.Nevertheless,the most popular ionic polymers are derived from fossil-based resources.Hence,it is now deemed crucial to produce these actuators using sustainable materials.In this review,the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewablematerials.The reviewencompasses recent advancements inmaterial formulation and performance enhancement,alongside a comparative analysis with conventional actuator systems.It was found that renewable polymeric actuators based on ionic gels and conductive polymers are easier to prepare compared to ionic polymermetal composites.In addition,the proportion of actuator manufacturing utilizing renewable materials rose to 90%,particularly for ion gel actuators,which was related to the possibility of using renewable polymers as ionic or conductive substances.Moreover,the possible improvements in biopolymeric actuators will experience an annual rise of at least 10%over the next decade,correlating with the growth of their market,which aligns with the worldwide goal of reducing global warming.Additionally,compared to fossil-derived polymers,the decomposition rate of renewable materials reaches 100%,while biodegradable fossil-based substances can exceed 60%within several weeks.Ultimately,this review aims to elucidate the potential of ionic polymeric materials as a viable and sustainable solution for future actuator technologies. 展开更多
关键词 Electroactive polymers renewable materials actuators artificial muscles HYDROGELS ionic polymermetal composites
暂未订购
Impregnation of ionic liquid into porous Fe-N-C electrocatalyst to improve electrode kinetics and mass transport for polymer electrolyte fuel cells
5
作者 Siming Li Enyang Sun +8 位作者 Pengfei Wei Wei Zhao Suizhu Pei Ying Chen Jie Yang Huili Chen Xi Yin Min Wang Yawei Li 《Chinese Journal of Catalysis》 2025年第5期277-288,共12页
Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon ele... Developing efficient and stable non-precious metal catalysts is essential for replacing platinum-based catalysts in polymer electrolyte membrane fuel cells(PEMFCs).The transition metal and nitrogen co-doped carbon electrocatalyst(M-N-C)is considered an effective alternative to precious metal catalysts.However,its relatively poor performance in acidic environments has always been a problem plaguing its practical application in PEMFCs.This study presents a sequential deposition methodology for constructing a composite catalytic system of Fe-N-C and ionic liquid(IL),which exhibits improved performance at both half-cell and membrane electrode assembly scales.The presence of IL significantly inhibits H_(2)O_(2)production,preferentially promoting the 4e–O_(2)reduction reaction,resulting in improved electrocatalytic activity and stability.Additionally,the enhanced PEMFC performance of IL containing electrodes is a direct result of the improved ionic and reactant accessibility of the pore confined Fe-N-C catalysts where the IL minimizes local resistive transport losses.This study establishes a strategic foundation for the practical utilization of non-precious metal catalysts in PEMFCs and other energy converting technologies. 展开更多
关键词 Fuel cell ELECTROCATALYSIS Oxygen reduction reaction ionic liquid Non-platinum group metal
在线阅读 下载PDF
Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions
6
作者 Yu-Jie Shang Bian-Bian Guo +2 位作者 Hao-Nan Li Yong-Jin Li Jing Yang 《Chinese Journal of Polymer Science》 2025年第5期819-827,共9页
The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilu... The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature,in which semi-permeable membranes play a vital role in determining the recovery efficiency.Herein,we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process.The resulting FO membrane shows a compact polyamide layer with a thickness of 30-200 nm,guranteeing a high selectivity to ILs and water.Meanwhile,the nanofibrous substrate with large and interconnect pores as well as low tortuosity,providing mechanical and permeable support for the composite membranes.IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process.First,the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution,resulting in an enhancement in driving force of water osmosis and IL enrichment.Moreover,alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer via electrostatic and alkyl-πinteractions.Meanwhile,such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion.Therefore,imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss.Remarkably,the final concentration of IL with longest alkyl length reaches the highest(6.4 mol·L^(-1)).This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions. 展开更多
关键词 Thin-film composite membrane Forward osmosis ionic liquids Interfacial polymerization Electrospun nanofiber
原文传递
Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices
7
作者 Jeong-Gil Kim Jaehyoung Ko +8 位作者 Hyung-Kyu Lim Yerin Jo Hayoung Yu Min Woo Kim Min Ji Kim Hyeon Su Jeong Jinwoo Lee Yongho Joo Nam Dong Kim 《Nano-Micro Letters》 2025年第8期202-218,共17页
Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during defo... Fiber-shaped energy storage devices(FSESDs)with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation.Among the solid options,polymer electrolytes are particularly preferred due to their robustness and flexibility,although their low ionic conductivity remains a significant challenge.Here,we present a redox polymer electrolyte(HT_RPE)with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl(HT)as a multi-functional additive.HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species.These synergetic effects lead to high ionic conductivity(73.5 mS cm−1)based on a lower activation energy of 0.13 eV than other redox additives.Moreover,HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes(energy density of 25.4 W h kg^(−1) at a power density of 25,000 W kg^(−1))without typical active materials,along with excellent stability(capacitance retention of 91.2%after 8,000 bending cycles).This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability,providing a promising pathway for next-generation flexible energy storage devices. 展开更多
关键词 Redox polymer electrolyte Hydroxy-TEMPO ionic conductivity Self-exchange reaction Fiber-shaped energy storage devices
在线阅读 下载PDF
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
8
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 polymerized ionic liquid Solid polymer electrolyte Structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
The study of antibacterial activity of cationic poly(β-amino ester)regulating by amphiphilic balance
9
作者 Chong Liu Ling Li +7 位作者 Jiahui Gao Yanwei Li Nazhen Zhang Jing Zang Cong Liu Zhaopei Guo Yanhui Li Huayu Tian 《Chinese Chemical Letters》 2025年第2期304-308,共5页
It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence an... It is well known that cationic polymers have excellent antimicrobial capacity accompanied with high biotoxicity,to reduce biotoxicity needs to decrease the number of cationic groups on polymers,which will influence antimicrobial activity.It is necessary to design a cationic polymer mimic natural antimicrobial peptide with excellent antibacterial activity and low toxicity to solve the above dilemma.Here,we designed and prepared a series of cationic poly(β-amino ester)s(PBAEs)with different cationic contents,and introducing hydrophobic alkyl chain to adjust the balance between antimicrobial activity and biotoxicity to obtain an ideal antimicrobial polymer.The optimum one of synthesized PBAE(hydrophilic cationic monomer:hydrophobic monomer=5:5)was screened by testing cytotoxicity and minimum inhibitory concentration(MIC),which can effectively kill S.aureus and E.coli with PBAE concentration of15μg/m L by a spread plate bacteriostatic method and dead and alive staining test.The way of PBAE killing bacterial was destroying the membrane like natural antimicrobial peptide observed by scanning electron microscopy(SEM).In addition,PBAE did not exhibit hemolysis and cytotoxicity.In particular,from the result of animal tests,the PBAE was able to promote healing of infected wounds from removing mature S.aureus and E.coli on the surface of infected wound.As a result,our work offers a viable approach for designing antimicrobial materials,highlighting the significant potential of PBAE polymers in the field of biomedical materials. 展开更多
关键词 Antimicrobial Cationic polymers poly(β-amino ester)s Michael addition polymerization Amphiphilic balance
原文传递
Tuning the cross-linked structure of basic poly(ionic liquid)to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate
10
作者 Zhaoyang Qi Shiquan Zhong +4 位作者 Huiyun Su Changshen Ye Limei Ren Ting Qiu Jie Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期106-116,共11页
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ... Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC. 展开更多
关键词 poly(ionic liquid) Cross-linking degree Dimethyl carbonate production Transesterification reaction Mechanism
在线阅读 下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting 被引量:1
11
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
在线阅读 下载PDF
Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes
12
作者 Haiman Hu Jiajia Li +3 位作者 Yue Wu Wenhao Fang Haitao Zhang Xiaoyan Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期110-119,共10页
The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambigu... The confined ionic liquid(IL) in solid polymer composite electrolytes(SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO_(2)(SiO_(2)@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li+transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher t+Li, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO_(2) provided an additional Li+transport pathway(Li+→ SiO_(2)@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries. 展开更多
关键词 ionic liquid CONFINEMENT ionic transport pathway Lithium-ion transport kinetics Lithium metal batteries
在线阅读 下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
13
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
原文传递
Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life
14
作者 Juhyoung Kim Woonghee Choi +1 位作者 Seong-Ju Hwang Dong Wook Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期4-12,共9页
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani... Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode. 展开更多
关键词 composite cathode electrochemical stability ionic conductive polymer solid-state battery sulfide solid electrolyte
在线阅读 下载PDF
Beyond contribution of ionic liquids in nanostructuring polyaniline morphology;its effect on the properties of the polymerization medium
15
作者 Fatima Al-Zohbi Fouad Ghamouss +4 位作者 Bruno Schmaltz Mohamed Abarbri Khalil Cherry Mohamad fadel Tabcheh François Tran-Van 《Nano Materials Science》 CSCD 2024年第6期735-740,共6页
In the present work,the focus has been shifted to the relationship between the PANI morphology and the physicochemical properties,controlled by the amount of added ionic liquids,of the polymerization medium instead of... In the present work,the focus has been shifted to the relationship between the PANI morphology and the physicochemical properties,controlled by the amount of added ionic liquids,of the polymerization medium instead of focusing on the structure of the ionic liquids as used to be in the litterature.For that reason,PANI has been synthesized in different weight ratio of[Pyrr][PTS]/water following the standard experimental process.The addition of[Pyrr][PTS]into the polymerization medium controls the morphology of PANI without affecting its structure.Moreover,[Pyrr][PTS]promotes a viscous reaction system without the need of an external source.The viscosity of the polymerization system restricts the diffusion of species that leads to the predominance of the homogeneous nucleation mode during the course of polymerization and,thus,nanostructuring of PANI morphology.As for the ionic conductivity,it reflects the mobility of the ions of the polymerization medium and,thus,the way of its interference with the formed PANI that affects the arrangement and the shape of formed PANI fibers.This relationship between PANI morphology and the physicochemical properties,adjusted by adding ionic liquids,of the polymerization medium is prelaminar and promising.The effect of the ionic liquids on the viscosity as well as on the mobility of the polymerization medium have to be taken into consideration to choose the ionic liquids,which lead to the PANI with desired morphology. 展开更多
关键词 polyANILINE ionic liquids Morphological characteristics Nucleation mode VISCOSITY
在线阅读 下载PDF
Highly Bendable Ionic Electro-responsive Artificial Muscles Using Microfibrillated Cellulose Fibers Combined with Polyvinyl Alcohol
16
作者 Congqing Deng Shanqi Zheng +1 位作者 Ke Zhong Fan Wang 《Journal of Bionic Engineering》 CSCD 2024年第5期2313-2323,共11页
For promising applications such as soft robotics,flexible haptic monitors,and active biomedical devices,it is important to develop ultralow voltage,highly-performant artificial muscles with high bending strains,rapid ... For promising applications such as soft robotics,flexible haptic monitors,and active biomedical devices,it is important to develop ultralow voltage,highly-performant artificial muscles with high bending strains,rapid response times,and superior actuation endurance.We report a novel highly performant and low-cost artificial muscle based on microfibrillated cellulose(MFC),ionic liquid(IL),and polyvinyl alcohol(PVA),The proposed MFC-IL-PVA actuator exhibits excellent electro-chemical performance and actuations characteristics with a high specific capacitance of 225 mF/cm2,a large bending strain of 0.51%,peak displacement up to 7.02 mm at 0.25 V ultra-low voltage,outstanding actuation flexural endurance(99.1%holding rate for 3 h),and a wide frequency band(0.1-5 Hz).These attributes stem mainly from its high specific surface area and porosity,tunable mechanical properties,and the strong ionic interactions of cations and anions with MFC and PVA in ionic liquids.Furthermore,bionic applications such as bionic flytraps,bionic butterflies with vibrating wings,and smart circuit switches have been successfully realized using this technology.These specific bionic applications demonstrate the versatility and potential of the MFC-IL-PVA actuator,highlighting its important role in the fields of bionic engineering,robotics,and smart materials.They open up new possibilities for innovative scientific research and technological applications. 展开更多
关键词 Artificial muscles ionic actuators Microfibrillated cellulose Bionic applications
在线阅读 下载PDF
Polyoxometalates containing aluminum atoms 被引量:1
17
作者 Li-Min Cui Wei-Hui Fang Jian Zhang 《Chinese Chemical Letters》 2025年第10期226-234,共9页
For a long time,researchers have been fascinated by the structurally diverse and high-performance characteristics of polyoxometalates(POMs).Modifying POMs with various types and properties of metals has broadened thei... For a long time,researchers have been fascinated by the structurally diverse and high-performance characteristics of polyoxometalates(POMs).Modifying POMs with various types and properties of metals has broadened their applications in fields such as magnetism,luminescence,and catalysis.However,despite the discovery of numerous POM structures doped with transition metal ions,the development of aluminum(Al)as aⅢA group metal in the POM field has been slow.Aluminum,the most abundant metal in nature,offers innate electron-deficient properties that,when combined with highly charged POMs,could introduce novel structures and excellent functionalities like proton conduction to this field.Therefore,this review will address the gap in summarizing Al-containing POMs by categorizing and summarizing the synthesis,structural characteristics,and properties of Al-containing POMs,aiming to provide a theoretical foundation for exploring POM structures doped with Al atoms.The review also analyzes and forecasts the prospects in this field. 展开更多
关键词 polyOXOMETALATE ALUMINUM polyoxoaluminate ionic crystal CATALYSIS
原文传递
Axial emission characteristics of an ionic liquid electrospray thruster with a circular emitter 被引量:1
18
作者 Cheng YANG Jiawei LUO +1 位作者 Xiangbei WU Yan SHEN 《Chinese Journal of Aeronautics》 2025年第1期297-305,共9页
Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL... Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary. 展开更多
关键词 ELECTROSPRAY ionic liquid thruster Self-organize EMITTER Taylor cone
原文传递
Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte 被引量:1
19
作者 Jingyu Shi Xiaofeng Wu +7 位作者 Yutong Chen Yi Zhang Xiangyan Hou Ruike Lv Junwei Liu Mengpei Jiang Keke Huang Shouhua Feng 《Chinese Chemical Letters》 2025年第5期198-210,共13页
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag... Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies. 展开更多
关键词 Garnet-structured solid-state electrolyte Structure factors ionic conductivity Chemical stability Li-ion battery
原文传递
Sustainable compression-molded bamboo fibers/poly(lactic acid)green composites with excellent UV shielding performance 被引量:1
20
作者 Binqi Fei Haiyan Yang +8 位作者 Jing Yang Dawei Wang Hua Guo Hua Hou Saad Melhi Ben Bin Xu Hamdy Khamees Thabet Zhanhu Guo Zhengjun Shi 《Journal of Materials Science & Technology》 2025年第2期247-257,共11页
The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to... The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to provide ideas for this issue.This strategy relied on using appropriate mechanical treatment and sodium lignosulfonate coating to improve the dispersion and interfacial compatibility of bamboo fibers in poly(lactic acid).By optimising the particle size and concentration of sodium lignosulphonate,high value-added and green composites were prepared using sectional pressurization with a venting procedure.The treated composite displayed an ultra-smooth surface(roughness of 0.592 nm),impressive transient properties(disintegration and degradation behaviour after 30 d),and outstanding ultraviolet(UV)shielding properties(100%).These properties hold the promise of being an excellent substrate for electronic devices,especially for high-precision processing,transient electronics,and UV damage prevention.The satisfactory interfacial compatibility of the composites was confirmed by detailed characterisation regarding the related physicochemical properties.This investigation offers a sustainable approach for producing high value-added green composites from biomass and biomass-derived materials. 展开更多
关键词 Bamboo fibers poly(lactic acid) Interfacial compatibility Sodium lignosulfonate
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部