Herein,a modified screen printed carbon electrode(SPCE)based on a composite material,graphene oxide-gold nanoparticles(GO-AuNPs),and poly(3-aminobenzoic acid)(P3ABA)for the detection of paraquat(PQ)is introduced.The m...Herein,a modified screen printed carbon electrode(SPCE)based on a composite material,graphene oxide-gold nanoparticles(GO-AuNPs),and poly(3-aminobenzoic acid)(P3ABA)for the detection of paraquat(PQ)is introduced.The modified electrode was fabricated by drop casting of the GO-AuNPs,followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA.The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy(SEM)for each step of modification.The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode.In addition,the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate,which stimulate redox reaction on the modified electrode,thus improving the sensitivity of PQ analysis.The SPCE/GOAuNPs/P3ABA offered a wide linear range of PQ determination(10^(−9)-10^(−4) mol/L)and low limit of detection(LOD)of 0.45×10^(−9) mol/L or 0.116μg/L,which is far below international safety regulations.The modified electrode showed minimum interference effect with percent recovery ranging from 96.5%to 116.1%after addition of other herbicides,pesticides,metal ions,and additives.The stability of the SPCE/GO-AuNPs/P3ABA was evaluated,and the results indicated negligible changes in the detection signal over 9 weeks.Moreover,this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.展开更多
Polactide(PLA),poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P(3HB-CO-4HB)),and poly(butylene adipate co-terephthalate)(PBAT)ternary blends were prepared by extrusion blending.The biodegradable PLA/P(3HB-co 4HB)/PBAT f...Polactide(PLA),poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P(3HB-CO-4HB)),and poly(butylene adipate co-terephthalate)(PBAT)ternary blends were prepared by extrusion blending.The biodegradable PLA/P(3HB-co 4HB)/PBAT films were successfully obtained by using blown films technique.Excellnt siffness-toughness balance was achieved for 55/10/35 PLA/P(3HB-co 4HB)/PBAT film.The tensile strength reached 33.0 MPa(MD)and 23.5 MPa(TD).the elongation at break exceeded 1309%,and tear strength exceeded 110 kN/m.The Young's modulus as low as about 1800 MPa also met packaging applications.SEM observations revealed rough and long ligaments,indicating that the tear specimens were broken yieldingly.The addition of PBAT elastomers was the main reason for the improved toughness of the film.From DMA and SEM analysis,it was demonstrated that PLA P(3HB co 4HB),and PBAT were prilly compatible.With increasing P(3HB CO-4HB)content,the melt and cold crstallization of PLA was promoted.The enzymatic degradation experiments indicated that the films had good biodegradability.These findings gave important implications for designing and manufacturing biodegradation package of high biological carbon content.展开更多
AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal ste...AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O2 (air) or 2% O2 (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS: Film thickness correlated directly with weight/volume PHBHHx (r2 = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values > 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O2 and 21% O2 respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O2. An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O2. Cell migration into films was not observed. CONCLUSION: This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair.展开更多
Poly(3-hexylthiophene)(P3HT)thin films,obtained by normal spin-coating and solvent vapor assisted spin-coating(SVASP)before and after thermal annealing(TA),and the corresponding devices were prepared to unravel the mi...Poly(3-hexylthiophene)(P3HT)thin films,obtained by normal spin-coating and solvent vapor assisted spin-coating(SVASP)before and after thermal annealing(TA),and the corresponding devices were prepared to unravel the microstructure-property relationship,which is of great importance for the development of organic electronics.When SVASP-TA films were used as the active layers of the organic field-effect transistors,a hole mobility up to 0.38 cm^(2)·V^(-1)·s^(-1)was achieved.This mobility was one of the highest values and one order of magnitude higher than that of the normal spin-coating films based transistors.The relationship between the microstructure and the device performance was fully investigated by UV-Vis absorption spectra,grazing incident X-ray diffraction(GIXD),and atomic force microscopy(AFM).The impressive mobility was attributed to the high crystallinity and ordered molecule packing,which stem from the synergistic effects of SVASP and thermal annealing.展开更多
Mesenchymal stem cells(MSCs)are stromal multipotent stem cells that can differentiate into multiple cell types,including fibroblasts,osteoblasts,chondrocytes,adipocytes,and myoblasts,thus allowing them to contribute t...Mesenchymal stem cells(MSCs)are stromal multipotent stem cells that can differentiate into multiple cell types,including fibroblasts,osteoblasts,chondrocytes,adipocytes,and myoblasts,thus allowing them to contribute to the regeneration of various tissues,especially bone tissue.MSCs are now considered one of the most promising cell types in the field of tissue engineering.Traditional petri dish-based culture of MSCs generate heterogeneity,which leads to inconsistent efficacy of MSC applications.Biodegradable and biocompatible polymers,poly(3-hydroxyalkanoates)(PHAs),are actively used for the manufacture of scaffolds that serve as carriers for MSC growth.The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers,the 3D and surface microstructure of the scaffolds,and the biological activity of PHAs,which was discovered in a series of investigations.The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied.We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs,especially the most widespread representative poly(3-hydroxybutyrate)(PHB).This biopolymer is present in the bacteria of mammalian microbiota,whereas endogenous poly(3-hydroxybutyrate)is found in mammalian tissues.The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate)in bacteria and eukaryotes,including in humans,is discussed in this paper.展开更多
Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. ...Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. The cyclic voltammetric behavior of pheniramine was studied in aqueous acidic, neutral and alkaline conditions. One well-defined oxidation peak was observed in the cyclic voltammograms at all pHs. The influence of pH, scan rate and concentration revealed irreversible electron transfer and the oxidation was diffusion controlled adsorption. The SEM analysis confirmed good accumulation of PA on the electrode surface. A systematic study of influence of various experimental parameters that affect the stripping voltammetric response was carried out and the maximum peak current conditions were arrived at. Calibration was made under maximum peak current conditions. The range of study was 0.05 to 0.4 μg/mL on Ppy/GCE and 0.025 to 0.4μg/mL on PEDOT/GCE and the lower limit of determination were 0.035μg/mL on Ppy/GCE and 0.016μg/mL on PEDOT/GCE. The suitability of the method for the determination of PA in pharmaceutical preparations and urine samples was also ascertained.展开更多
The work described herein represents an efficient method in the deposition of poly(3-methylthiophene),P3MeTh,thin films utilizing a microwave plasma system in combination with a simultaneous doping with iodine.It was ...The work described herein represents an efficient method in the deposition of poly(3-methylthiophene),P3MeTh,thin films utilizing a microwave plasma system in combination with a simultaneous doping with iodine.It was envisaged that,an alternative poly(3-methylthiophene),P(3MeTh),with an electron donating methyl substituent,would reduce the degree of ring opening which reportedly occur to a certain extent during the plasma polymerization process of its parent compound polythiophene.An alkyl substituent would also increase the solubility of the materials.P(3MeTh)thin film deposition has been performed utilizing microwave-induced plasma polymerization in order to directly grow films on glass substrates.Moreover,simultaneous doping of the so-formed polymer with iodine has been carried out as opposed to the post-synthesis doping method.This is aimed to prolong electrical conducting lifetime of the materials.The synthesized films were characterized by attenuated total reflection fourier transform infrared(ATR FT-IR)spectroscopy and energy dispersive X-ray spectroscopy(EDS)to confirm the incorporation of iodine dopant into the films.Scanning electron microscopy showed uniformly deposited films.It has been observed that the electrical conductivity of the doped film is 2 orders of magnitude higher than the undoped counterpart.The doped fabricated films exhibited UV-vis spectra indicative of increased π-conjugation(536 nm).Furthermore,electrical conductivity of the in situ doped P(3MeTh)is more highly sustained over a longer period of time.展开更多
Polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) 1:1 weight-ratio blend are reported. The effects of various annealing treatments on the de...Polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) 1:1 weight-ratio blend are reported. The effects of various annealing treatments on the device performance are investigated. Thermal annealing shows significant improvement of the device performances. For devices at 130℃ annealing, maximum power conversion efficiency (PCE) of 3.3% and All factor up to 60.3% is achieved under air mass 1.5, 100 m W/cm^2 illumination. We discuss the effect of thermal annealing by the results of ultraviolet-visible absorption spectroscopy (UV-vis), dark current-voltage curve, atomic force microscopy (AFM).展开更多
A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate)(P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of...A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate)(P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60℃ for 3 h;the mixture was then spin-cast as a thin film, and annealed at 250℃ for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.展开更多
The Raman spectra of poly(3-methylthiophene) (PMeT) films with different thicknesses, which have been electrochemically deposited on a flat stainless steel electrode surface by direct oxidation of 3-methylthiophene in...The Raman spectra of poly(3-methylthiophene) (PMeT) films with different thicknesses, which have been electrochemically deposited on a flat stainless steel electrode surface by direct oxidation of 3-methylthiophene in boron trifluoride diethyl etherate (BFEE) at a constant applied potential of 1.38 V (versus SCE), have been investigated by excitation with a 633-nm laser beam. The spectroscopic results demonstrated that the doping level of PMeT film was increasing during film growth. This finding was also confirmed by electrochemical examination. Moreover, the Raman bands assigned to radical cations and dications in doped PMeT films were found approximately at 1420 and 1400 cm(-1), respectively. Radical cations and dications coexist on the backbone of PMeT as conductive species and their concentrations increase with the increase of doping level. Successive cyclic voltammetry was proved to be an effective approach to improving the doping level of as-grown thin compact PMeT film.展开更多
Poly(3-hydroxybutyrate) (PHB) is an intracellular carbon and energy storage material accumulated by many kinds of microorganism under unfavorable growth conditions. For the production of PHB, Alcaligenes eutrophus has...Poly(3-hydroxybutyrate) (PHB) is an intracellular carbon and energy storage material accumulated by many kinds of microorganism under unfavorable growth conditions. For the production of PHB, Alcaligenes eutrophus has been widely used because it is easy to grow, and its physiological and biochemical changes during the PHB synthesis is understood in details. A very high concentration and productivity of PHB could be obtained by fed-batch culture of Alcaligenes eutrophus with phosphate limitation in 50 L fermenter.展开更多
A new kind of polyesteramide based on 3-morpholinone and e caprolactone was synthesized by ring opening polymerization with zinc powder as catalyst.The polymer was characterized by^(1)H NMR,GPC and FT-IR.The effect of...A new kind of polyesteramide based on 3-morpholinone and e caprolactone was synthesized by ring opening polymerization with zinc powder as catalyst.The polymer was characterized by^(1)H NMR,GPC and FT-IR.The effect of time,temperature and ratio of m(M)/m(1),n(M)/n(CL)on the reaction was studied.The results show that the optimal reaction temperature is 120℃;the optimal duration of reaction is 24 h;the optimal ratio of m(M)/m(CL)is 50:1;the optimal ratio of n(M)/n(CL)is 1:2.Under the optimal condition the polymer whose M_(n)was 13509 could be obtained while the weight yield was 79%.展开更多
Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is...Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is about 1.8 eV, which is comparable with that of PTV. Owing to the introduction of alkyl side groups onto the backbone of the polymer, it can be dissolved in common organic solvents such as chloroform, THF and toluene. The synthesis of soluble PHTV is a very important approach to preventing oxidation and to improving the properties and the processbility of the PTV. The existence of alkyl side groups in PHTV does not affect its, bandgap and thermal properties as compared with PTV. After doping with FeCl3, the conductivity of PHTV is as high as 1.1 x 10(-2) S/cm. The soluble PHTV can be easily transformed into thin film with much better quality than that of the PTV film prepared by the traditional precursor method, which is very important for fabricating devices with good properties.展开更多
A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which wer...A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.展开更多
The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions. i e..' two different relative relations (90° and 180°) between the directions of...The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions. i e..' two different relative relations (90° and 180°) between the directions of gravity and solidification. were investigated. X-ray diffraction results reveal that although similar layered structures are formed, under the condition of the relative relation 180°. temperature; gradient has greater effects on the perfect degree of the layered structures of P3DDT. It also can be concluded that after recrystallization. the layered structures of P3DDT can be improved at relative relation 90°, but the orderly degree of the arrangements of alkyl side chains are not improved yet, even is reduced for both of the oriented solidification conditions.展开更多
The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our...The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.展开更多
Two alkyl substituted polythiophene derivatives: poly(3-hexylthiophene)(P3HT) and poly(3-decylthiophene)(P3DT), have synthesized by oxidation coupling polymerization of 3-alkylthiophene using iron(III) chloride as cat...Two alkyl substituted polythiophene derivatives: poly(3-hexylthiophene)(P3HT) and poly(3-decylthiophene)(P3DT), have synthesized by oxidation coupling polymerization of 3-alkylthiophene using iron(III) chloride as catalyst in chloroform. While both polymers in pure chloroform solution have maximum absorption at approximately same wavelength of 440nm, they behave differently with respect to changes observed on their UV-visible and photoluminescence spectra when the quality of the poor solvent is changed in good solvent (chloroform) / poor solvent (methanol) mixtures. With increasing volume fraction of methanol in mixtures, the absorption spectra of P3HT and P3DT red-shift, peaking at maximum wavelength of 495nm (P3HT) and 510nm(P3DT). Furthermore, the absorption spectra of the two polymers in chloroform blue-shift as the temperature rises. P3HT shows 4.73nm blue-shifts at 50℃ in contrast to the case at 20℃, while P3DT blue-shifts about 5.04nm. The photoluminescence spectra of the two polymers in mixed solution are also investigated, which show that the luminescence spectra shift to longer wavelength with an accompanying drop in the PL intensity as methanol is increased. The absorption and emission spectra of the two polymers in a poor solvent and a thin film are similar, which indicate that a similar longer conjugation length in the two cases. It could conclude that the polymers exist almost the same conformations and aggregations in both a poor solvent and a thin film. P3DT exhibits more sensitive spectra properties (big red-shifts in both absorption and luminescence spectra in poor solvents and large blue-shifts at high temperature) with contrast to P3HT, which imply that long side alkyl may improve the chromic properties of the polymer.展开更多
Accumulation of recalcitrant plastics in the environment has become a world-wide problem in today’s societies. Rapid depletion of natural resources for synthetic plastics along with environmental concerns has directe...Accumulation of recalcitrant plastics in the environment has become a world-wide problem in today’s societies. Rapid depletion of natural resources for synthetic plastics along with environmental concerns has directed research towards finding alternatives to petroleum-based polymers. Poly(3-hydroxybutyric acid) P(3HB), as one of these alternatives, have attracted much attention in recent years due to their varied mechanical properties, biocompatibility and biodegradability. The aim of this study was to identify an agro-industrial waste resource economically suitable for large-scale production of P(3HB), to optimize the production using Response Surface Methodology in small-scale and subsequently, to test the production in a continuously stirred tank reactor. Among a range of agro-industrial waste, orange peel was selected as the most suitable for P(3HB) production. P(3HB) concentration of 1.24 g P(3HB)/L culture broth with 41% P(3HB)/dcw yield was obtained using orange peel as the sole carbon source in optimized medium with a modified strain of Bacillus subtilis (B. subtilis OK2).展开更多
基金supported by the ProgramManagement Unit on Area Based Development (PMUA),Thailand (No.4594393)the National Science and Technology Development Agency (NSTDA),Thailand (No.P2250367).
文摘Herein,a modified screen printed carbon electrode(SPCE)based on a composite material,graphene oxide-gold nanoparticles(GO-AuNPs),and poly(3-aminobenzoic acid)(P3ABA)for the detection of paraquat(PQ)is introduced.The modified electrode was fabricated by drop casting of the GO-AuNPs,followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA.The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy(SEM)for each step of modification.The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode.In addition,the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate,which stimulate redox reaction on the modified electrode,thus improving the sensitivity of PQ analysis.The SPCE/GOAuNPs/P3ABA offered a wide linear range of PQ determination(10^(−9)-10^(−4) mol/L)and low limit of detection(LOD)of 0.45×10^(−9) mol/L or 0.116μg/L,which is far below international safety regulations.The modified electrode showed minimum interference effect with percent recovery ranging from 96.5%to 116.1%after addition of other herbicides,pesticides,metal ions,and additives.The stability of the SPCE/GO-AuNPs/P3ABA was evaluated,and the results indicated negligible changes in the detection signal over 9 weeks.Moreover,this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.
基金This work was financially supported by the fund of Science and Technology Bureau of Jilin Province of China(No.201702040125F)Chinese Academy of Sciences(Changchun Branch)(No.2020SYHZ0002)+1 种基金Science and Technology Services Network Program of Chinese Academy of Sciences(STS Project)(No.KFJ-STS-ZDTP-082)the National Science Foundation of Zhejiang Province of China(No.LQY19B040001).
文摘Polactide(PLA),poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P(3HB-CO-4HB)),and poly(butylene adipate co-terephthalate)(PBAT)ternary blends were prepared by extrusion blending.The biodegradable PLA/P(3HB-co 4HB)/PBAT films were successfully obtained by using blown films technique.Excellnt siffness-toughness balance was achieved for 55/10/35 PLA/P(3HB-co 4HB)/PBAT film.The tensile strength reached 33.0 MPa(MD)and 23.5 MPa(TD).the elongation at break exceeded 1309%,and tear strength exceeded 110 kN/m.The Young's modulus as low as about 1800 MPa also met packaging applications.SEM observations revealed rough and long ligaments,indicating that the tear specimens were broken yieldingly.The addition of PBAT elastomers was the main reason for the improved toughness of the film.From DMA and SEM analysis,it was demonstrated that PLA P(3HB co 4HB),and PBAT were prilly compatible.With increasing P(3HB CO-4HB)content,the melt and cold crstallization of PLA was promoted.The enzymatic degradation experiments indicated that the films had good biodegradability.These findings gave important implications for designing and manufacturing biodegradation package of high biological carbon content.
基金Supported by EPSRC Doctoral Training Centre in Regenerative Medicine and the HYANJI Scaffold Project (European Commission Framework 7 program)
文摘AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O2 (air) or 2% O2 (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS: Film thickness correlated directly with weight/volume PHBHHx (r2 = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values > 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O2 and 21% O2 respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O2. An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O2. Cell migration into films was not observed. CONCLUSION: This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair.
基金the International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality(No.20520741500)the Fundamental Research Funds for the Central Universities(No.2232020D-01)+2 种基金Shanghai Rising-Star Program(No.18QA1405000),the Innovation Program of Shanghai Municipal Education Commission(No.2017-01-07-00-03-E00055)the Science and Technology Commission of Shanghai Municipality(No.20JC1414900)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(No.2020-16).
文摘Poly(3-hexylthiophene)(P3HT)thin films,obtained by normal spin-coating and solvent vapor assisted spin-coating(SVASP)before and after thermal annealing(TA),and the corresponding devices were prepared to unravel the microstructure-property relationship,which is of great importance for the development of organic electronics.When SVASP-TA films were used as the active layers of the organic field-effect transistors,a hole mobility up to 0.38 cm^(2)·V^(-1)·s^(-1)was achieved.This mobility was one of the highest values and one order of magnitude higher than that of the normal spin-coating films based transistors.The relationship between the microstructure and the device performance was fully investigated by UV-Vis absorption spectra,grazing incident X-ray diffraction(GIXD),and atomic force microscopy(AFM).The impressive mobility was attributed to the high crystallinity and ordered molecule packing,which stem from the synergistic effects of SVASP and thermal annealing.
基金Supported by Russian Science Foundation,No.17-74-20104
文摘Mesenchymal stem cells(MSCs)are stromal multipotent stem cells that can differentiate into multiple cell types,including fibroblasts,osteoblasts,chondrocytes,adipocytes,and myoblasts,thus allowing them to contribute to the regeneration of various tissues,especially bone tissue.MSCs are now considered one of the most promising cell types in the field of tissue engineering.Traditional petri dish-based culture of MSCs generate heterogeneity,which leads to inconsistent efficacy of MSC applications.Biodegradable and biocompatible polymers,poly(3-hydroxyalkanoates)(PHAs),are actively used for the manufacture of scaffolds that serve as carriers for MSC growth.The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers,the 3D and surface microstructure of the scaffolds,and the biological activity of PHAs,which was discovered in a series of investigations.The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied.We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs,especially the most widespread representative poly(3-hydroxybutyrate)(PHB).This biopolymer is present in the bacteria of mammalian microbiota,whereas endogenous poly(3-hydroxybutyrate)is found in mammalian tissues.The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate)in bacteria and eukaryotes,including in humans,is discussed in this paper.
文摘Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. The cyclic voltammetric behavior of pheniramine was studied in aqueous acidic, neutral and alkaline conditions. One well-defined oxidation peak was observed in the cyclic voltammograms at all pHs. The influence of pH, scan rate and concentration revealed irreversible electron transfer and the oxidation was diffusion controlled adsorption. The SEM analysis confirmed good accumulation of PA on the electrode surface. A systematic study of influence of various experimental parameters that affect the stripping voltammetric response was carried out and the maximum peak current conditions were arrived at. Calibration was made under maximum peak current conditions. The range of study was 0.05 to 0.4 μg/mL on Ppy/GCE and 0.025 to 0.4μg/mL on PEDOT/GCE and the lower limit of determination were 0.035μg/mL on Ppy/GCE and 0.016μg/mL on PEDOT/GCE. The suitability of the method for the determination of PA in pharmaceutical preparations and urine samples was also ascertained.
文摘The work described herein represents an efficient method in the deposition of poly(3-methylthiophene),P3MeTh,thin films utilizing a microwave plasma system in combination with a simultaneous doping with iodine.It was envisaged that,an alternative poly(3-methylthiophene),P(3MeTh),with an electron donating methyl substituent,would reduce the degree of ring opening which reportedly occur to a certain extent during the plasma polymerization process of its parent compound polythiophene.An alkyl substituent would also increase the solubility of the materials.P(3MeTh)thin film deposition has been performed utilizing microwave-induced plasma polymerization in order to directly grow films on glass substrates.Moreover,simultaneous doping of the so-formed polymer with iodine has been carried out as opposed to the post-synthesis doping method.This is aimed to prolong electrical conducting lifetime of the materials.The synthesized films were characterized by attenuated total reflection fourier transform infrared(ATR FT-IR)spectroscopy and energy dispersive X-ray spectroscopy(EDS)to confirm the incorporation of iodine dopant into the films.Scanning electron microscopy showed uniformly deposited films.It has been observed that the electrical conductivity of the doped film is 2 orders of magnitude higher than the undoped counterpart.The doped fabricated films exhibited UV-vis spectra indicative of increased π-conjugation(536 nm).Furthermore,electrical conductivity of the in situ doped P(3MeTh)is more highly sustained over a longer period of time.
基金Supported by the National Basic Research Programme of China under Grant No 2002CB613405, and the National Natural Science Foundation of China under Grant Nos 50573024 and 50433030, the Key Project of the Ministry of Education of China (104208), and the Natural Science Foundation of South China University of Technology (E5040910).
文摘Polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) : [6,6]-phenyl-C61-butyricacid methyl ester (PCBM) 1:1 weight-ratio blend are reported. The effects of various annealing treatments on the device performance are investigated. Thermal annealing shows significant improvement of the device performances. For devices at 130℃ annealing, maximum power conversion efficiency (PCE) of 3.3% and All factor up to 60.3% is achieved under air mass 1.5, 100 m W/cm^2 illumination. We discuss the effect of thermal annealing by the results of ultraviolet-visible absorption spectroscopy (UV-vis), dark current-voltage curve, atomic force microscopy (AFM).
基金financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science, ICT and Future Planning (Nos. NRF-2015R1A2A1A01002493 and NRF-2018R1A2B6003616)supported by “Nobel Research Project” grant for Grubbs Center for Polymers and Catalysis funded by the GIST in 2019
文摘A rod-rod diblock copolymer (diBCP), poly(3-hexylthiophene)-block-poly(furfuryl isocyanate)(P3HT-b-PFIC), was synthesized through the anionic polymerization with an oxyanionic macroinitiator of P3HT. The properties of the diBCP (molecular weight, dispersity, composition, thermal stability, UV-visible absorption, and thin film morphology) were determined by various analytical methods. P3HT-b-PFIC was blended with C60 in a toluene solution to prepare a thin film of binary electron donor/acceptor system. Such blending enabled partial conjugation of the two components by the Diels-Alder reaction between furan and C60 at 60℃ for 3 h;the mixture was then spin-cast as a thin film, and annealed at 250℃ for 24 h. Tapping-mode atomic force microscopy (AFM) revealed that P3HT and C60 domains had nanoscale interfaces without a large phase segregation. This result indicated that the microphase separation of C60-functionalized P3HT-b-PFIC preserved even at high temperature provided free C60 molecules with channels to diffuse on the sides of P3HT domain, thus preventing the macroscopic crystallization of free C60 through the interfacial stabilization.
基金This work was supported by the National Natual Science Foundation of China (No. 50073012 & No. 50133010).
文摘The Raman spectra of poly(3-methylthiophene) (PMeT) films with different thicknesses, which have been electrochemically deposited on a flat stainless steel electrode surface by direct oxidation of 3-methylthiophene in boron trifluoride diethyl etherate (BFEE) at a constant applied potential of 1.38 V (versus SCE), have been investigated by excitation with a 633-nm laser beam. The spectroscopic results demonstrated that the doping level of PMeT film was increasing during film growth. This finding was also confirmed by electrochemical examination. Moreover, the Raman bands assigned to radical cations and dications in doped PMeT films were found approximately at 1420 and 1400 cm(-1), respectively. Radical cations and dications coexist on the backbone of PMeT as conductive species and their concentrations increase with the increase of doping level. Successive cyclic voltammetry was proved to be an effective approach to improving the doping level of as-grown thin compact PMeT film.
文摘Poly(3-hydroxybutyrate) (PHB) is an intracellular carbon and energy storage material accumulated by many kinds of microorganism under unfavorable growth conditions. For the production of PHB, Alcaligenes eutrophus has been widely used because it is easy to grow, and its physiological and biochemical changes during the PHB synthesis is understood in details. A very high concentration and productivity of PHB could be obtained by fed-batch culture of Alcaligenes eutrophus with phosphate limitation in 50 L fermenter.
文摘A new kind of polyesteramide based on 3-morpholinone and e caprolactone was synthesized by ring opening polymerization with zinc powder as catalyst.The polymer was characterized by^(1)H NMR,GPC and FT-IR.The effect of time,temperature and ratio of m(M)/m(1),n(M)/n(CL)on the reaction was studied.The results show that the optimal reaction temperature is 120℃;the optimal duration of reaction is 24 h;the optimal ratio of m(M)/m(CL)is 50:1;the optimal ratio of n(M)/n(CL)is 1:2.Under the optimal condition the polymer whose M_(n)was 13509 could be obtained while the weight yield was 79%.
基金This work was supported by the Chinese Academy of Sciences (No. KJCX2-H1).
文摘Soluble poly(3-hexyl-2,5-thienylene vinylene) (PHTV) was readily synthesized from thiophene in a yield better than that of the precursor method to prepare poly(thienylene vinylene) (PTV). The bandgap of the polymer is about 1.8 eV, which is comparable with that of PTV. Owing to the introduction of alkyl side groups onto the backbone of the polymer, it can be dissolved in common organic solvents such as chloroform, THF and toluene. The synthesis of soluble PHTV is a very important approach to preventing oxidation and to improving the properties and the processbility of the PTV. The existence of alkyl side groups in PHTV does not affect its, bandgap and thermal properties as compared with PTV. After doping with FeCl3, the conductivity of PHTV is as high as 1.1 x 10(-2) S/cm. The soluble PHTV can be easily transformed into thin film with much better quality than that of the PTV film prepared by the traditional precursor method, which is very important for fabricating devices with good properties.
文摘A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.
基金Supported by the Key Project of National Natural Science Foundation(No.2 99340 72 ) and subsidized by the SpecialFund for Major State Basic Research Projects(No.G19990 6 4 80 6 )
文摘The crystallization behaviors of poly (3-dodecylthiophene) (P3DDT) under two different oriented solidification conditions. i e..' two different relative relations (90° and 180°) between the directions of gravity and solidification. were investigated. X-ray diffraction results reveal that although similar layered structures are formed, under the condition of the relative relation 180°. temperature; gradient has greater effects on the perfect degree of the layered structures of P3DDT. It also can be concluded that after recrystallization. the layered structures of P3DDT can be improved at relative relation 90°, but the orderly degree of the arrangements of alkyl side chains are not improved yet, even is reduced for both of the oriented solidification conditions.
文摘The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.
基金National Natural Science Foundation of China (60277002)
文摘Two alkyl substituted polythiophene derivatives: poly(3-hexylthiophene)(P3HT) and poly(3-decylthiophene)(P3DT), have synthesized by oxidation coupling polymerization of 3-alkylthiophene using iron(III) chloride as catalyst in chloroform. While both polymers in pure chloroform solution have maximum absorption at approximately same wavelength of 440nm, they behave differently with respect to changes observed on their UV-visible and photoluminescence spectra when the quality of the poor solvent is changed in good solvent (chloroform) / poor solvent (methanol) mixtures. With increasing volume fraction of methanol in mixtures, the absorption spectra of P3HT and P3DT red-shift, peaking at maximum wavelength of 495nm (P3HT) and 510nm(P3DT). Furthermore, the absorption spectra of the two polymers in chloroform blue-shift as the temperature rises. P3HT shows 4.73nm blue-shifts at 50℃ in contrast to the case at 20℃, while P3DT blue-shifts about 5.04nm. The photoluminescence spectra of the two polymers in mixed solution are also investigated, which show that the luminescence spectra shift to longer wavelength with an accompanying drop in the PL intensity as methanol is increased. The absorption and emission spectra of the two polymers in a poor solvent and a thin film are similar, which indicate that a similar longer conjugation length in the two cases. It could conclude that the polymers exist almost the same conformations and aggregations in both a poor solvent and a thin film. P3DT exhibits more sensitive spectra properties (big red-shifts in both absorption and luminescence spectra in poor solvents and large blue-shifts at high temperature) with contrast to P3HT, which imply that long side alkyl may improve the chromic properties of the polymer.
文摘Accumulation of recalcitrant plastics in the environment has become a world-wide problem in today’s societies. Rapid depletion of natural resources for synthetic plastics along with environmental concerns has directed research towards finding alternatives to petroleum-based polymers. Poly(3-hydroxybutyric acid) P(3HB), as one of these alternatives, have attracted much attention in recent years due to their varied mechanical properties, biocompatibility and biodegradability. The aim of this study was to identify an agro-industrial waste resource economically suitable for large-scale production of P(3HB), to optimize the production using Response Surface Methodology in small-scale and subsequently, to test the production in a continuously stirred tank reactor. Among a range of agro-industrial waste, orange peel was selected as the most suitable for P(3HB) production. P(3HB) concentration of 1.24 g P(3HB)/L culture broth with 41% P(3HB)/dcw yield was obtained using orange peel as the sole carbon source in optimized medium with a modified strain of Bacillus subtilis (B. subtilis OK2).