Unlike traditional video cameras,event cameras capture asynchronous event streams in which each event encodes pixel location,triggers’timestamps,and the polarity of brightness changes.In this paper,we introduce a nov...Unlike traditional video cameras,event cameras capture asynchronous event streams in which each event encodes pixel location,triggers’timestamps,and the polarity of brightness changes.In this paper,we introduce a novel hypergraph-based framework for moving object classification.Specifically,we capture moving objects with an event camera,to perceive and collect asynchronous event streams in a high temporal resolution.Unlike stacked event frames,we encode asynchronous event data into a hypergraph,fully mining the high-order correlation of event data,and designing a mixed convolutional hypergraph neural network for training to achieve a more efficient and accurate motion target recognition.The experimental results show that our method has a good performance in moving object classification(e.g.,gait identification).展开更多
A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the pr...A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two.展开更多
For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implem...For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implemented, which enables a more compact shape description of 3-D objects. The proposed classification method consists of two key processing stages: the improved constrained search on an interpretation tree and the following shape similarity measure computation. By the classification method, both whole match and partial match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series of experiments show the effectiveness of the presented 3-D object classification method.展开更多
An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, ...An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.展开更多
Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classificat...Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.展开更多
Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divid...Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.展开更多
Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ...Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.展开更多
An efficient convolution neural network(CNN) plays a crucial role in various visual tasks like object classification or detection, etc. The most common way to construct a CNN is stacking the same convolution block or ...An efficient convolution neural network(CNN) plays a crucial role in various visual tasks like object classification or detection, etc. The most common way to construct a CNN is stacking the same convolution block or complex connection. These approaches may be efficient but the parameter size and computation(Comp) have explosive growth. So we present a novel architecture called"DLA+", which could obtain the feature from the different stages, and by the newly designed convolution block, could achieve better accuracy, while also dropping the computation six times compared to the baseline. We design some experiments about classification and object detection. On the CIFAR10 and VOC data-sets, we get better precision and faster speed than other architecture. The lightweight network even allows us to deploy to some low-performance device like drone, laptop, etc.展开更多
Hyperspectral remote sensing has become one of the research frontiers in ground object identification and classification. On the basis of reviewing the application of hyperspectral remote sensing in identification and...Hyperspectral remote sensing has become one of the research frontiers in ground object identification and classification. On the basis of reviewing the application of hyperspectral remote sensing in identification and classification of ground objects at home and abroad. The research results of identification and classification of forest tree species, grassland and urban land features were summarized. Then the researches of classification methods were summarized. Finally the prospects of hyperspectral remote sensing in ground object identification and classification were prospected.展开更多
The Smart City concept revolves around gathering real time data from citizen,personal vehicle,public transports,building,and other urban infrastructures like power grid and waste disposal system.The understandings obt...The Smart City concept revolves around gathering real time data from citizen,personal vehicle,public transports,building,and other urban infrastructures like power grid and waste disposal system.The understandings obtained from the data can assist municipal authorities handle assets and services effectually.At the same time,the massive increase in environmental pollution and degradation leads to ecological imbalance is a hot research topic.Besides,the progressive development of smart cities over the globe requires the design of intelligent waste management systems to properly categorize the waste depending upon the nature of biodegradability.Few of the commonly available wastes are paper,paper boxes,food,glass,etc.In order to classify the waste objects,computer vision based solutions are cost effective to separate out the waste from the huge dump of garbage and trash.Due to the recent developments of deep learning(DL)and deep reinforcement learning(DRL),waste object classification becomes possible by the identification and detection of wastes.In this aspect,this paper designs an intelligence DRL based recycling waste object detection and classification(IDRL-RWODC)model for smart cities.The goal of the IDRLRWODC technique is to detect and classify waste objects using the DL and DRL techniques.The IDRL-RWODC technique encompasses a twostage process namely Mask Regional Convolutional Neural Network(Mask RCNN)based object detection and DRL based object classification.In addition,DenseNet model is applied as a baseline model for the Mask RCNN model,and a deep Q-learning network(DQLN)is employed as a classifier.Moreover,a dragonfly algorithm(DFA)based hyperparameter optimizer is derived for improving the efficiency of the DenseNet model.In order to ensure the enhanced waste classification performance of the IDRL-RWODC technique,a series of simulations take place on benchmark dataset and the experimental results pointed out the better performance over the recent techniques with maximal accuracy of 0.993.展开更多
Object tracking is one of the killer applications for wireless sensor networks (WSN) in which the network of wireless sensors is assigned the task of tracking a particular object. The network employs the object tracki...Object tracking is one of the killer applications for wireless sensor networks (WSN) in which the network of wireless sensors is assigned the task of tracking a particular object. The network employs the object tracking techniques to continuously report the position of the object in terms of Cartesian coordinates to a sink node or to a central base station. A family tree of object tracking techniques has been prepared.In this paper we have summarized the object tracking techniques available so far in wireless sensor networks.展开更多
In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads...In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads to recognition of the former. 3D objects of this database are transformations of other objects by one element of the overall transformation. The set of transformations considered in this work is the general affine group.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correla...At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correlation is calculated based on the statistical information of the data.This label correlation is global and depends on the dataset,not suitable for all samples.In the process of extracting image features,the characteristic information of small objects in the image is easily lost,resulting in a low classification accuracy of small objects.To this end,this paper proposes a multi-label image classification model based on multiscale fusion and adaptive label correlation.The main idea is:first,the feature maps of multiple scales are fused to enhance the feature information of small objects.Semantic guidance decomposes the fusion feature map into feature vectors of each category,then adaptively mines the correlation between categories in the image through the self-attention mechanism of graph attention network,and obtains feature vectors containing category-related information for the final classification.The mean average precision of the model on the two public datasets of VOC 2007 and MS COCO 2014 reached 95.6% and 83.6%,respectively,and most of the indicators are better than those of the existing latest methods.展开更多
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is...Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.展开更多
Object Detection is the task of localization and classification of objects in a video or image.In recent times,because of its widespread applications,it has obtained more importance.In the modern world,waste pollution...Object Detection is the task of localization and classification of objects in a video or image.In recent times,because of its widespread applications,it has obtained more importance.In the modern world,waste pollution is one significant environmental problem.The prominence of recycling is known very well for both ecological and economic reasons,and the industry needs higher efficiency.Waste object detection utilizing deep learning(DL)involves training a machine-learning method to classify and detect various types of waste in videos or images.This technology is utilized for several purposes recycling and sorting waste,enhancing waste management and reducing environmental pollution.Recent studies of automatic waste detection are difficult to compare because of the need for benchmarks and broadly accepted standards concerning the employed data andmetrics.Therefore,this study designs an Entropy-based Feature Fusion using Deep Learning forWasteObject Detection and Classification(EFFDL-WODC)algorithm.The presented EFFDL-WODC system inherits the concepts of feature fusion and DL techniques for the effectual recognition and classification of various kinds of waste objects.In the presented EFFDL-WODC system,two major procedures can be contained,such as waste object detection and waste object classification.For object detection,the EFFDL-WODC technique uses a YOLOv7 object detector with a fusionbased backbone network.In addition,entropy feature fusion-based models such as VGG-16,SqueezeNet,and NASNetmodels are used.Finally,the EFFDL-WODC technique uses a graph convolutional network(GCN)model performed for the classification of detected waste objects.The performance validation of the EFFDL-WODC approach was validated on the benchmark database.The comprehensive comparative results demonstrated the improved performance of the EFFDL-WODC technique over recent approaches.展开更多
By obtaining a feasible filter function,reconstructed images can be got with linear interpolation and liftered backprojection techniques.Considering the gray and spstial correlation neighbour informations of each pixe...By obtaining a feasible filter function,reconstructed images can be got with linear interpolation and liftered backprojection techniques.Considering the gray and spstial correlation neighbour informations of each pixel,a new supervised classification method is put forward for the reconstructed images,and an experiment with noise image is done,the result shows that the method is feasible and accurate compared with ideal phantoms.展开更多
Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remot...Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.展开更多
基金the National Key Research and Development Program of China(No.2021ZD0112400)。
文摘Unlike traditional video cameras,event cameras capture asynchronous event streams in which each event encodes pixel location,triggers’timestamps,and the polarity of brightness changes.In this paper,we introduce a novel hypergraph-based framework for moving object classification.Specifically,we capture moving objects with an event camera,to perceive and collect asynchronous event streams in a high temporal resolution.Unlike stacked event frames,we encode asynchronous event data into a hypergraph,fully mining the high-order correlation of event data,and designing a mixed convolutional hypergraph neural network for training to achieve a more efficient and accurate motion target recognition.The experimental results show that our method has a good performance in moving object classification(e.g.,gait identification).
基金Supported by the Major State Basic Research Development Program of China under Grant No. 5132103ZZT32.
文摘A Support Vector Machine is used as a classifier to the automatic detection and recognition of underwater still objects. Discrimination between the objects can be transferred into different projection spaces by the process of multi-field feature extraction. The multi-field feature vector includes time-domain, spectral, time-frequency distribution and bi-spectral features. Underwater target recognition can be considered as a problem of small sample recognition. SVM algorithm is appropriate to this kind of problems because of its outstanding generalizability. The SVM is contrasted with a Gaussian classifier and a k-nearest classifier in some experiments using real data of lake or sea trial. The experimental results indicate that SVM is better than the others two.
基金The National Basic Research Program of China(973Program)(No2006CB303105)the Research Foundation of Bei-jing Jiaotong University (NoK06J0170)
文摘For classifying unknown 3-D objects into a set of predetermined object classes, a part-level object classification method based on the improved interpretation tree is presented. The part-level representation is implemented, which enables a more compact shape description of 3-D objects. The proposed classification method consists of two key processing stages: the improved constrained search on an interpretation tree and the following shape similarity measure computation. By the classification method, both whole match and partial match with shape similarity ranks are achieved; especially, focus match can be accomplished, where different key parts may be labeled and all the matched models containing corresponding key parts may be obtained. A series of experiments show the effectiveness of the presented 3-D object classification method.
基金Project(2009CB226107)supported by the National Basic Research Program of China
文摘An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.
基金financially supported by grant from National Natural Science Foundation of China(No.31300533)
文摘Object-based classification differentiates forest gaps from canopies at large regional scale by using remote sensing data. To study the segmentation and classification processes of object-based forest gaps classification at a regional scale, we sampled a natural secondary forest in northeast China at Maoershan Experimental Forest Farm.Airborne light detection and ranging(LiDAR; 3.7 points/m2) data were collected as the original data source and the canopy height model(CHM) and topographic dataset were extracted from the LiDAR data. The accuracy of objectbased forest gaps classification depends on previous segmentation. Thus our first step was to define 10 different scale parameters in CHM image segmentation. After image segmentation, the machine learning classification method was used to classify three kinds of object classes, namely,forest gaps, tree canopies, and others. The common support vector machine(SVM) classifier with the radial basis function kernel(RBF) was first adopted to test the effect of classification features(vegetation height features and some typical topographic features) on forest gap classification.Then the different classifiers(KNN, Bayes, decision tree,and SVM with linear kernel) were further adopted to compare the effect of classifiers on machine learning forest gaps classification. Segmentation accuracy and classification accuracy were evaluated by using Mo¨ller's method and confusion metrics, respectively. The scale parameter had a significant effect on object-based forest gap segmentation and classification. Classification accuracies at different scales revealed that there were two optimal scales(10 and 20) that provided similar accuracy, with the scale of 10 yielding slightly greater accuracy than 20. The accuracy of the classification by using combination of height features and SVM classifier with linear kernel was91% at the optimal scale parameter of 10, and it was highest comparing with other classification classifiers, such as SVM RBF(90%), Decision Tree(90%), Bayes(90%),or KNN(87%). The classifiers had no significant effect on forest gap classification, but the fewer parameters in the classifier equation and higher speed of operation probably lead to a higher accuracy of final classifications. Our results confirm that object-based classification can extract forest gaps at a large regional scale with appropriate classification features and classifiers using LiDAR data. We note, however, that final satisfaction of forest gap classification depends on the determination of optimal scale(s) of segmentation.
基金This work was supported by the National Natural Science Foundation of China[grant number 41101410]the Comprehensive Transportation Applications of High-resolution Remote Sensing program[grant number 07-Y30B10-9001-14/16]+1 种基金the Key Laboratory of Surveying Mapping and Geoinformation in Geographical Condition Monitoring[grant number 2014NGCM]the Science and Technology Plan of Sichuan Bureau of Surveying,Mapping and Geoinformation,China[grant number J2014ZC02].
文摘Inclusion of textures in image classification has been shown beneficial.This paper studies an efficient use of semivariogram features for object-based high-resolution image classification.First,an input image is divided into segments,for each of which a semivariogram is then calculated.Second,candidate features are extracted as a number of key locations of the semivariogram functions.Then we use an improved Relief algorithm and the principal component analysis to select independent and significant features.Then the selected prominent semivariogram features and the conventional spectral features are combined to constitute a feature vector for a support vector machine classifier.The effect of such selected semivariogram features is compared with those of the gray-level co-occurrence matrix(GLCM)features and window-based semivariogram texture features(STFs).Tests with aerial and satellite images show that such selected semivariogram features are of a more beneficial supplement to spectral features.The described method in this paper yields a higher classification accuracy than the combination of spectral and GLCM features or STFs.
基金supported by the Science and Technology Program of Zhejiang Province of China(2005C11001-02).
文摘Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.
基金supported by University Synergy Innovation Program of Anhui Province (No. GXXT-2019-007)Corporative Information Processing and Deep Mining for Intelligent Robot (No. JCYJ20170817155854115)+1 种基金Major Project for New Generation of AI (No.2018AAA0100400)Anhui Provincial Natural Science Foundation (No. 1908085MF206)。
文摘An efficient convolution neural network(CNN) plays a crucial role in various visual tasks like object classification or detection, etc. The most common way to construct a CNN is stacking the same convolution block or complex connection. These approaches may be efficient but the parameter size and computation(Comp) have explosive growth. So we present a novel architecture called"DLA+", which could obtain the feature from the different stages, and by the newly designed convolution block, could achieve better accuracy, while also dropping the computation six times compared to the baseline. We design some experiments about classification and object detection. On the CIFAR10 and VOC data-sets, we get better precision and faster speed than other architecture. The lightweight network even allows us to deploy to some low-performance device like drone, laptop, etc.
文摘Hyperspectral remote sensing has become one of the research frontiers in ground object identification and classification. On the basis of reviewing the application of hyperspectral remote sensing in identification and classification of ground objects at home and abroad. The research results of identification and classification of forest tree species, grassland and urban land features were summarized. Then the researches of classification methods were summarized. Finally the prospects of hyperspectral remote sensing in ground object identification and classification were prospected.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 1/282/42)This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program。
文摘The Smart City concept revolves around gathering real time data from citizen,personal vehicle,public transports,building,and other urban infrastructures like power grid and waste disposal system.The understandings obtained from the data can assist municipal authorities handle assets and services effectually.At the same time,the massive increase in environmental pollution and degradation leads to ecological imbalance is a hot research topic.Besides,the progressive development of smart cities over the globe requires the design of intelligent waste management systems to properly categorize the waste depending upon the nature of biodegradability.Few of the commonly available wastes are paper,paper boxes,food,glass,etc.In order to classify the waste objects,computer vision based solutions are cost effective to separate out the waste from the huge dump of garbage and trash.Due to the recent developments of deep learning(DL)and deep reinforcement learning(DRL),waste object classification becomes possible by the identification and detection of wastes.In this aspect,this paper designs an intelligence DRL based recycling waste object detection and classification(IDRL-RWODC)model for smart cities.The goal of the IDRLRWODC technique is to detect and classify waste objects using the DL and DRL techniques.The IDRL-RWODC technique encompasses a twostage process namely Mask Regional Convolutional Neural Network(Mask RCNN)based object detection and DRL based object classification.In addition,DenseNet model is applied as a baseline model for the Mask RCNN model,and a deep Q-learning network(DQLN)is employed as a classifier.Moreover,a dragonfly algorithm(DFA)based hyperparameter optimizer is derived for improving the efficiency of the DenseNet model.In order to ensure the enhanced waste classification performance of the IDRL-RWODC technique,a series of simulations take place on benchmark dataset and the experimental results pointed out the better performance over the recent techniques with maximal accuracy of 0.993.
文摘Object tracking is one of the killer applications for wireless sensor networks (WSN) in which the network of wireless sensors is assigned the task of tracking a particular object. The network employs the object tracking techniques to continuously report the position of the object in terms of Cartesian coordinates to a sink node or to a central base station. A family tree of object tracking techniques has been prepared.In this paper we have summarized the object tracking techniques available so far in wireless sensor networks.
文摘In this Paper, a classification method based on neural networks is presented for recognition of 3D objects. Indeed, the objective of this paper is to classify an object query against objects in a database, which leads to recognition of the former. 3D objects of this database are transformations of other objects by one element of the overall transformation. The set of transformations considered in this work is the general affine group.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
基金the National Natural Science Foundation of China(Nos.62167005 and 61966018)the Key Research Projects of Jiangxi Provincial Department of Education(No.GJJ200302)。
文摘At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correlation is calculated based on the statistical information of the data.This label correlation is global and depends on the dataset,not suitable for all samples.In the process of extracting image features,the characteristic information of small objects in the image is easily lost,resulting in a low classification accuracy of small objects.To this end,this paper proposes a multi-label image classification model based on multiscale fusion and adaptive label correlation.The main idea is:first,the feature maps of multiple scales are fused to enhance the feature information of small objects.Semantic guidance decomposes the fusion feature map into feature vectors of each category,then adaptively mines the correlation between categories in the image through the self-attention mechanism of graph attention network,and obtains feature vectors containing category-related information for the final classification.The mean average precision of the model on the two public datasets of VOC 2007 and MS COCO 2014 reached 95.6% and 83.6%,respectively,and most of the indicators are better than those of the existing latest methods.
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
基金supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant No.0719
文摘Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.
基金funded by Institutional Fund Projects under Grant No. (IFPIP:557-135-1443).
文摘Object Detection is the task of localization and classification of objects in a video or image.In recent times,because of its widespread applications,it has obtained more importance.In the modern world,waste pollution is one significant environmental problem.The prominence of recycling is known very well for both ecological and economic reasons,and the industry needs higher efficiency.Waste object detection utilizing deep learning(DL)involves training a machine-learning method to classify and detect various types of waste in videos or images.This technology is utilized for several purposes recycling and sorting waste,enhancing waste management and reducing environmental pollution.Recent studies of automatic waste detection are difficult to compare because of the need for benchmarks and broadly accepted standards concerning the employed data andmetrics.Therefore,this study designs an Entropy-based Feature Fusion using Deep Learning forWasteObject Detection and Classification(EFFDL-WODC)algorithm.The presented EFFDL-WODC system inherits the concepts of feature fusion and DL techniques for the effectual recognition and classification of various kinds of waste objects.In the presented EFFDL-WODC system,two major procedures can be contained,such as waste object detection and waste object classification.For object detection,the EFFDL-WODC technique uses a YOLOv7 object detector with a fusionbased backbone network.In addition,entropy feature fusion-based models such as VGG-16,SqueezeNet,and NASNetmodels are used.Finally,the EFFDL-WODC technique uses a graph convolutional network(GCN)model performed for the classification of detected waste objects.The performance validation of the EFFDL-WODC approach was validated on the benchmark database.The comprehensive comparative results demonstrated the improved performance of the EFFDL-WODC technique over recent approaches.
文摘By obtaining a feasible filter function,reconstructed images can be got with linear interpolation and liftered backprojection techniques.Considering the gray and spstial correlation neighbour informations of each pixel,a new supervised classification method is put forward for the reconstructed images,and an experiment with noise image is done,the result shows that the method is feasible and accurate compared with ideal phantoms.
文摘Many researches have been performed comparing object-based classification (OBC) and pixel-based classification (PBC), particularly in classifying high-resolution satellite images. VNREDSat-1 is the first optical remote sensing satellite of Vietnam with resolution of 2.5 m (Panchromatic) and 10 m (Multispectral). The objective of this research is to compare two classification approaches using VNREDSat-1 image for mapping mangrove forest in Vien An Dong commune, Ngoc Hien district, Ca Mau province. ISODATA algorithm (in PBC method) and membership function classifier (in OBC method) were chosen to classify the same image. The results show that the overall accuracies of OBC and PBC are 73% and 62.16% respectively, and OBC solved the “salt and pepper” which is the main issue of PBC as well. Therefore, OBC is supposed to be the better approach to classify VNREDSat-1 for mapping mangrove forest in Ngoc Hien commune.