Ferroelectric resistance switching(RS)devices based on doped HfO_(2) films have drawn extensive attention due to their good complementary metal-oxide-semiconductor transistor(CMOS)compatibility compared with that of c...Ferroelectric resistance switching(RS)devices based on doped HfO_(2) films have drawn extensive attention due to their good complementary metal-oxide-semiconductor transistor(CMOS)compatibility compared with that of conventional perovskite ferroelectrics.However,reported RS characteristics for HfO_(2)-based RS devices contrast sharply with substantially different on/off ratios rangingfrom less than one to four orders of magnitude.展开更多
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu...Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ...The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.展开更多
BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds pre...BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.展开更多
Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide ra...Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide range of imaging applications for enhanced visualization of structures,target identification,etc.One commonly used tool for depolarizing discrimination is the so-called depolarizing spaces.In this article,we exploit the combined use of two depolarizing spaces,the indices of polarization purity(IPP)and polarizance–reflection–transformation(PRT)spaces,to improve the capability of optical systems to identify polarization–anisotropy depolarizers.The potential of these spaces to discriminate among different depolarizers is first studied from a series of simulations by incoherently adding diattenuations or retarders,with some control parameters emulating samples in nature.The simulated results demonstrate that the proposed methods are capable of increasing differences among depolarizers beyond other well-known techniques.Experimentally,validation is provided by conducting diverse phantom experiments of easy interpretation and mimicking the stated simulations.As a useful application of our approach,we developed a model able to retrieve intrinsic microscopic information of samples from macroscopic polarimetric measurements.The proposed methods enable non-invasive,straightforward,macroscopic characterization of depolarizing samples,and may be of interest for enhanced visualization of samples in multiple imaging scenarios.展开更多
All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential ...All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments.展开更多
The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How...The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.展开更多
Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band ...Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.展开更多
The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engin...The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).展开更多
BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transf...BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transferase(OGT),promotes inflammatory responses in diabetic periodontitis(DP).Additionally,p38 mitogen-activated protein kinase regulates macrophage polarization.However,the interplay between OGT,macrophage polarization,and p38 signaling in the progression of DP remains unexplored.AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38.METHODS For in vivo experiments,mice were divided into four groups:Control,DP model,model+short hairpin(sh)RNAnegative control,and model+sh-OGT.Diabetes was induced by streptozotocin,followed by ligation and lipopolysaccharide(LPS)administration to induce periodontitis.The impact of OGT was assessed by injecting sh-OGT lentivirus.Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrateresistant acid phosphatase staining,while macrophage polarization was determined through quantitative real-time polymerase chain reaction(qPCR)and immunohistochemistry.For in vitro experiments,RAW264.7 cells were treated with LPS and high glucose(HG)(25 mmol/L D-glucose)to establish a cell model of DP.OGT was inhibited by OGT inhibitor(OSMI4)treatment and knocked down by sh-OGT transfection.M1/M2 polarization was analyzed using qPCR,immunofluorescence,and flow cytometry.Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting.RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice,associated with elevated O-GlcNAcylation and OGT levels.Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS+HG-induced RAW264.7 cells.Furthermore,LPS+HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells.OGT interacted with p38 to promote its O-GlcNAcylation at residues A28,T241,and T347,as well as its phosphorylation at residue Y221.CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation,thereby promoting M1 to M2 macrophage polarization and mitigating DP.These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP.展开更多
Objective:Ovarian cancer(OC)ranks among the leading causes of mortality among the female cancers worldwide.Numerous studies have explored the development and progression of OC at multiple genetic regulatory levels.How...Objective:Ovarian cancer(OC)ranks among the leading causes of mortality among the female cancers worldwide.Numerous studies have explored the development and progression of OC at multiple genetic regulatory levels.However,relatively few studies have explored the impact of post-translational modifications(PTM)on OC progression,which is essential for uncovering new therapeutic targets.This study aimed to systematically identify the key PTM types involved in OCprogression,and to explore and evaluate their translational potential as therapeutic targets.Methods:First,we utilized multiple general PTM antibodies to compare gross PTM levels between normal ovarian and OC tissues from clinical females.After identifying lactylation as the PTM with the most significant differences,we selected representative samples for label-free mass spectrometry to identify specific lactylation sites.Next,we transfected A2780(OC)cells with either wild-type(WT)or mutant(K192A[Q])poly(ADP-ribose)polymerase 1(PARP1)conjugated to enhanced green fluorescent protein(EGFP)with a StrepⅡpeptide tag and assessed various cellular indexes related to cell proliferation(clonogenicity assay),migration(scratch wound healing assay),and reactive oxygen species levels.Results:Pan-lactylation was significantly upregulated in clinical OC samples,with PARP1 lactylation at K192 being one of the most common modifications.The growth and migration of A2780 cells were markedly suppressed by overexpressing PARP1-WT but not mutant PARP1.Overexpressing PARP1 significantly downregulated the phosphorylation of extracellular signal-regulated kinases 1/2(ERK1/2).Conclusion:This study uncovered a novel PTM of PARP1 in OC,lactylation,and demonstrated that lactylation at K192 is crucial in regulating OC cell growth and migration via the ERK1/2 pathway.Further investigations are required to elucidate the broader functional implications of PARP1 lactylation and its therapeutic potential.展开更多
Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups in...Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeuti...BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i...Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.展开更多
This study aims to explore the unconscious motivations underlying migration in Niger, with an emphasis on understanding the phenomenon of pathological travel. Its aim is to identify the unconscious factors of patholog...This study aims to explore the unconscious motivations underlying migration in Niger, with an emphasis on understanding the phenomenon of pathological travel. Its aim is to identify the unconscious factors of pathological travel among migrants. Pathological travel, as discussed in the scientific literature on psychopathology, is characterised by movements initiated under the influence of delusions, hallucinations or other serious psychiatric disorders. The aim of this research is to contribute to our understanding of how these unconscious factors influence migration decisions. Using a retrospective analysis of five cases, this study examines the psychological and psychiatric dimensions of migration, particularly among patients referred to the psychiatry department of the Niamey National Hospital between 2017 and 2018. The five cases analysed, representing 12% of a cohort of 40 migrant patients, suffered from chronic psychotic disorders, including schizophrenia and chronic hallucinatory psychosis. By means of diagnostic interviews and categorical sorting, three main unconscious motivations were identified: the delusional state with themes of filiation and persecution, the hallucinations that dictated the travel behaviour, and the dissociative states manifested by depersonalisation and derealisation. It also emerges from this analysis that pathological travel often involves prolonged journeys on foot and without purpose. Thus, untreated mental illness plays a significant role in shaping and influencing individual and social behaviour. The results of this study have important implications for public health and migration policy. They highlight the need to integrate health assessments into migration management systems, particularly in regions serving as transit hubs for migrants. The research also highlights the need for culturally sensitive psychiatric interventions to address the interaction between pre-existing mental disorders and migration. This study contributes to a better understanding of the psychological dimensions of migration by highlighting the importance of addressing mental health as an integral part of humanitarian action. The knowledge gained paves the way for future research to explore this understudied aspect of migration on a broader scale.展开更多
Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT...Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury.展开更多
A dual-wavelength ring-cavity erbium-doped fiber(EDF)laser is designed based on two polarization beam splitters(PBSs)and a polarization controller(PC)performing gain equalization and polarization hole burning(PHB)effe...A dual-wavelength ring-cavity erbium-doped fiber(EDF)laser is designed based on two polarization beam splitters(PBSs)and a polarization controller(PC)performing gain equalization and polarization hole burning(PHB)effect.At room temperature,a stable dual-wavelength laser and a multi-output port laser which can simultaneously emit single-wavelength lasing and dual-wavelength lasing are obtained.The signal-to-noise ratios(SNRs)for single-wavelength outputs were 54.70 dB and 57.10 dB,with power fluctuations less than 0.038 mW and 0.029 mW,respectively.For dual-wavelength lasing,the SNRs were 59.63 dB and 59.25 dB,with power fluctuations less than 0.018 mW and 0.008 mW,respectively.The center wavelength drift was less than 0.006 nm for both single-wavelength and dual-wavelength outputs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52125204,52250281,U21A2066,92163210 and 52372128)the National Key Research and Development Program of China(Nos.2022YFB3807602,2019YFA0307900)the Fundamental Research Funds for the Central Universities(No.WK2030000070)。
文摘Ferroelectric resistance switching(RS)devices based on doped HfO_(2) films have drawn extensive attention due to their good complementary metal-oxide-semiconductor transistor(CMOS)compatibility compared with that of conventional perovskite ferroelectrics.However,reported RS characteristics for HfO_(2)-based RS devices contrast sharply with substantially different on/off ratios rangingfrom less than one to four orders of magnitude.
基金supported by the National Natural Science Foundation of China, Nos.82201474 (to GL), 82071330 (to ZT), and 92148206 (to ZT)Key Research and Discovery Program of Hubei Province, No.2021BCA109 (to ZT)。
文摘Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82071387(to HT),81971172(to YW)the Natural Science Foundation of Zhejiang Province,China,No.LY22H090012(to HT)the Basic Research Project of Wenzhou City,China,No.Y20220923(to MZ)。
文摘The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.
基金National Natural Science Foundation of China,No.81873934and Jinan Science and Technology Planning Project,No.202225065.
文摘BACKGROUND Mesenchymal stem cells,found in various tissues,possess significant healing and immunomodulatory properties,influencing macrophage polarization,which is essential for wound repair.However,chronic wounds present significant therapeutic challenges,requiring novel strategies to improve healing outcomes.AIM To investigate the potential of fetal dermal mesenchymal stem cells(FDMSCs)in enhancing wound healing through modulation of macrophage polarization,specifically by promoting the M2 phenotype to address inflammatory responses in chronic wounds.METHODS FDMSCs were isolated from BalB/C mice and co-cultured with RAW264.7 macrophages to assess their effects on macrophage polarization.Flow cytometry,quantitative reverse transcriptase polymerase chain reaction,and histological analyses were employed to evaluate shifts in macrophage phenotype and wound healing in a mouse model.Statistical analysis was performed using GraphPad Prism.RESULTS FDMSCs induced macrophage polarization from the M1 to M2 phenotype,as demonstrated by a reduction in proinflammatory markers(inducible nitric oxide synthase,interleukin-6)and an increase in anti-inflammatory markers[mannose receptor(CD206),arginase-1]in co-cultured RAW264.7 macrophages.These shifts were confirmed by flow cytometry.In an acute skin wound model,FDMSC-treated mice exhibited faster wound healing,enhanced collagen deposition,and improved vascular regeneration compared to controls.Significantly higher expression of arginase-1 further indicated an enriched M2 macrophage environment.CONCLUSION FDMSCs effectively modulate macrophage polarization from M1 to M2,reduce inflammation,and enhance tissue repair,demonstrating their potential as an immunomodulatory strategy in wound healing.These findings highlight the promising therapeutic application of FDMSCs in managing chronic wounds.
基金supported by the China Scholarship Council(Grant No.202306690024)the Ministerio de Ciencia e Innovación and Fondos FEDER(Grant Nos.PID2021-562126509OB-C21 and PDC2022-133332-C21)+1 种基金the Generalitat de Catalunya(Grant No.2021SGR00138)the Beatriu de Pinós Fellowship(Grant No.2021-BP-00206).
文摘Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide range of imaging applications for enhanced visualization of structures,target identification,etc.One commonly used tool for depolarizing discrimination is the so-called depolarizing spaces.In this article,we exploit the combined use of two depolarizing spaces,the indices of polarization purity(IPP)and polarizance–reflection–transformation(PRT)spaces,to improve the capability of optical systems to identify polarization–anisotropy depolarizers.The potential of these spaces to discriminate among different depolarizers is first studied from a series of simulations by incoherently adding diattenuations or retarders,with some control parameters emulating samples in nature.The simulated results demonstrate that the proposed methods are capable of increasing differences among depolarizers beyond other well-known techniques.Experimentally,validation is provided by conducting diverse phantom experiments of easy interpretation and mimicking the stated simulations.As a useful application of our approach,we developed a model able to retrieve intrinsic microscopic information of samples from macroscopic polarimetric measurements.The proposed methods enable non-invasive,straightforward,macroscopic characterization of depolarizing samples,and may be of interest for enhanced visualization of samples in multiple imaging scenarios.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000002)the National Natural Science Foundation of China(No.52206089)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515010288,2023B1515120005)the Natural Science Foundation of Shenzhen(JCYJ20230807093315033)the Shenzhen Engineering Research Center,Southern University of Science and Technology(No.XMHT20230208003)high level of special funds(G03034K001)。
文摘All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments.
基金Supported by the National Key Research and Development Program of China(2022YFA1404602)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)+3 种基金the National Natural Science Foundation of China(U23B2045,62305362)the Program of Shanghai Academic/Technology Research Leader(22XD1424400)the Fund of SITP Innovation Foundation(CX-461 and CX-522)Special Project to Seize the Commanding Heights of Science and Technology of Chinese Academy of Sciences,subtopic(GJ0090406-6).
文摘The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.
基金supported by National Natural Science Foundation of China(NSFC 52432002,52372041,52302087)Heilongjiang Touyan Team Program,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund(SAST2022-60).
文摘Developing effective strategies to regulate graphene’s conduction loss and polarization has become a key to expanding its application in the electromagnetic wave absorption(EMWA)field.Based on the unique energy band structure of graphene,regulating its bandgap and electrical properties by introducing heteroatoms is considered a feasible solution.Herein,metal-nitrogen doping reduced graphene oxide(M–N-RGO)was prepared by embedding a series of single metal atoms M–N_(4) sites(M=Mn,Fe,Co,Ni,Cu,Zn,Nb,Cd,and Sn)in RGO using an N-coordination atom-assisted strategy.These composites had adjustable conductivity and polarization to optimize dielectric loss and impedance matching for efficient EMWA performance.The results showed that the minimum reflection loss(RL_(min))of Fe–N-RGO reaches−74.05 dB(2.0 mm)and the maximum effective absorption bandwidth(EAB_(max))is 7.05 GHz(1.89 mm)even with a low filler loading of only 1 wt%.Combined with X-ray absorption spectra(XAFS),atomic force microscopy,and density functional theory calculation analysis,the Fe–N_(4) can be used as the polarization center to increase dipole polarization,interface polarization and defect-induced polarization due to d-p orbital hybridization and structural distortion.Moreover,electron migration within the Fe further leads to conduction loss,thereby synergistically promoting energy attenuation.This study demonstrates the effectiveness of metal-nitrogen doping in regulating the graphene′s dielectric properties,which provides an important basis for further investigation of the loss mechanism.
基金Financial support from the National Natural Science Foundation of China(52372289,52102368,52231007,12327804,T2321003,22088101,22178037 and U22A20424)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project,Liaoning Revitalization Talents Program(XLYC2002114)are highly appreciated.
文摘The synthesis of carbon supporter/nanoscale high-entropy alloys(HEAs)electromagnetic response composites by carbothermal shock method has been identified as an advanced strategy for the collaborative competition engineering of conductive/dielectric genes.Electron migration modes within HEAs as manipulated by the electronegativity,valence electron configurations and molar proportions of constituent elements determine the steady state and efficiency of equivalent dipoles.Herein,enlightened by skin-like effect,a reformative carbothermal shock method using carbonized cellulose paper(CCP)as carbon supporter is used to preserve the oxygencontaining functional groups(O·)of carbonized cellulose fibers(CCF).Nucleation of HEAs and construction of emblematic shell-core CCF/HEAs heterointerfaces are inextricably linked to carbon metabolism induced by O·.Meanwhile,the electron migration mode of switchable electronrich sites promotes the orientation polarization of anisotropic equivalent dipoles.By virtue of the reinforcement strategy,CCP/HEAs composite prepared by 35%molar ratio of Mn element(CCP/HEAs-Mn_(2.15))achieves efficient electromagnetic wave(EMW)absorption of−51.35 dB at an ultra-thin thickness of 1.03 mm.The mechanisms of the resulting dielectric properties of HEAs-based EMW absorbing materials are elucidated by combining theoretical calculations with experimental characterizations,which provide theoretical bases and feasible strategies for the simulation and practical application of electromagnetic functional devices(e.g.,ultra-wideband bandpass filter).
基金Supported by the National Natural Science Foundation of China,No.81973684Natural Science Foundation of Sichuan Province,No.2023NSFSC1760Youth Talent Fund of Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital,No.2021QN09。
文摘BACKGROUND Periodontitis,when exacerbated by diabetes,is characterized by increased M1 macrophage polarization and decreased M2 polarization.O-linkedβ-N-acetylglucosamine(O-GlcNAcylation),catalyzed by O-GlcNAc transferase(OGT),promotes inflammatory responses in diabetic periodontitis(DP).Additionally,p38 mitogen-activated protein kinase regulates macrophage polarization.However,the interplay between OGT,macrophage polarization,and p38 signaling in the progression of DP remains unexplored.AIM To investigate the effect of OGT on macrophage polarization in DP and its role in mediating O-GlcNAcylation of p38.METHODS For in vivo experiments,mice were divided into four groups:Control,DP model,model+short hairpin(sh)RNAnegative control,and model+sh-OGT.Diabetes was induced by streptozotocin,followed by ligation and lipopolysaccharide(LPS)administration to induce periodontitis.The impact of OGT was assessed by injecting sh-OGT lentivirus.Maxillary bone destruction was evaluated using micro-computed tomography analysis and tartrateresistant acid phosphatase staining,while macrophage polarization was determined through quantitative real-time polymerase chain reaction(qPCR)and immunohistochemistry.For in vitro experiments,RAW264.7 cells were treated with LPS and high glucose(HG)(25 mmol/L D-glucose)to establish a cell model of DP.OGT was inhibited by OGT inhibitor(OSMI4)treatment and knocked down by sh-OGT transfection.M1/M2 polarization was analyzed using qPCR,immunofluorescence,and flow cytometry.Levels of O-GlcNAcylation were measured using immunoprecipitation and western blotting.RESULTS Our results demonstrated that M1 macrophage polarization led to maxillary bone loss in DP mice,associated with elevated O-GlcNAcylation and OGT levels.Knockdown of OGT promoted the shift from M1 to M2 macrophage polarization in both mouse periodontal tissues and LPS+HG-induced RAW264.7 cells.Furthermore,LPS+HG enhanced the O-GlcNAcylation of p38 in RAW264.7 cells.OGT interacted with p38 to promote its O-GlcNAcylation at residues A28,T241,and T347,as well as its phosphorylation at residue Y221.CONCLUSION Inhibition of OGT-mediated p38 O-GlcNAcylation deactivates the p38 pathway by suppressing its self-phosphorylation,thereby promoting M1 to M2 macrophage polarization and mitigating DP.These findings suggested that modulating macrophage polarization through regulation of O-GlcNAcylation may represent a novel therapeutic strategy for treating DP.
文摘Objective:Ovarian cancer(OC)ranks among the leading causes of mortality among the female cancers worldwide.Numerous studies have explored the development and progression of OC at multiple genetic regulatory levels.However,relatively few studies have explored the impact of post-translational modifications(PTM)on OC progression,which is essential for uncovering new therapeutic targets.This study aimed to systematically identify the key PTM types involved in OCprogression,and to explore and evaluate their translational potential as therapeutic targets.Methods:First,we utilized multiple general PTM antibodies to compare gross PTM levels between normal ovarian and OC tissues from clinical females.After identifying lactylation as the PTM with the most significant differences,we selected representative samples for label-free mass spectrometry to identify specific lactylation sites.Next,we transfected A2780(OC)cells with either wild-type(WT)or mutant(K192A[Q])poly(ADP-ribose)polymerase 1(PARP1)conjugated to enhanced green fluorescent protein(EGFP)with a StrepⅡpeptide tag and assessed various cellular indexes related to cell proliferation(clonogenicity assay),migration(scratch wound healing assay),and reactive oxygen species levels.Results:Pan-lactylation was significantly upregulated in clinical OC samples,with PARP1 lactylation at K192 being one of the most common modifications.The growth and migration of A2780 cells were markedly suppressed by overexpressing PARP1-WT but not mutant PARP1.Overexpressing PARP1 significantly downregulated the phosphorylation of extracellular signal-regulated kinases 1/2(ERK1/2).Conclusion:This study uncovered a novel PTM of PARP1 in OC,lactylation,and demonstrated that lactylation at K192 is crucial in regulating OC cell growth and migration via the ERK1/2 pathway.Further investigations are required to elucidate the broader functional implications of PARP1 lactylation and its therapeutic potential.
文摘Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.
基金Supported by the Qilu Medical School Traditional Chinese Medicine Academic School Inheritance Project,No.93 LW[2022]Construction Project of the Inheritance Studio of National Famous Traditional Chinese Medicine Experts,Traditional Chinese Medicine Teaching Letter No.75[2022]Qilu Health and Fitness Talents in 2019,No.3 LWRZ[2020].
文摘BACKGROUND Diabetic foot ulcers(DFUs)are a significant contributor to disability and mortality in diabetic patients.Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing.However,the complex mechanism,the difficulty in clinical translation,and the large heterogeneity present significant challenges.Hence,this study was to comprehensively analyze the publication status and trends of studies on macrophage polarization and DFU healing.AIM To examine the relevant literature on macrophage polarization in DFU healing.METHODS A bibliometric analysis was conducted using the Web of Science database.Relevant literature was retrieved from the Web of Science Core Collection database between 2013 to 2023 using literature visualization and analysis software(VOSviewer and CiteSpace)and bibliometric online platforms.The obtained literature was then subjected to visualization and analysis of different countries/regions,institutions,journals,authors,and keywords to reveal the research’s major trends and focus.RESULTS The number of publications on the role of macrophage polarization in DFU healing increased rapidly from 2013 to 2023,especially in the latter period.Chinese researchers were the most prolific in this field,with 217 publications,while American researchers had been engaged in this field for a longer period.Qian Tan of Nanjing Drum Tower Hospital and Qian Ding of Nanjing University were the first to publish in this field.Shanghai Jiao Tong University was the institution with the most publications(27).The keywords“bone marrow”,“adjustment,replacement,response,tissue repair”,and“activation,repair,differentiation”appeared more frequently.The study of macrophage polarization in DFU healing focused on the regulatory mechanism,gene expression,and other aspects.CONCLUSION This study through the bibliometric method reveals the research trends and development trends in this field of macrophage polarization in DFU healing from 2013 to 2023 in the Web of Science Core Collection database.The key hotspots in this field mainly include the regulation of macrophage activation,gene expression,wound tissue repair,and new wound materials.This study provides references for future research directions.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金supported by research grants from the Ningbo Science and Technology Plan Project,No.2022Z143hezuo(to BL)the National Natural Science Foundation of China,No.82201520(to XD)。
文摘Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
文摘This study aims to explore the unconscious motivations underlying migration in Niger, with an emphasis on understanding the phenomenon of pathological travel. Its aim is to identify the unconscious factors of pathological travel among migrants. Pathological travel, as discussed in the scientific literature on psychopathology, is characterised by movements initiated under the influence of delusions, hallucinations or other serious psychiatric disorders. The aim of this research is to contribute to our understanding of how these unconscious factors influence migration decisions. Using a retrospective analysis of five cases, this study examines the psychological and psychiatric dimensions of migration, particularly among patients referred to the psychiatry department of the Niamey National Hospital between 2017 and 2018. The five cases analysed, representing 12% of a cohort of 40 migrant patients, suffered from chronic psychotic disorders, including schizophrenia and chronic hallucinatory psychosis. By means of diagnostic interviews and categorical sorting, three main unconscious motivations were identified: the delusional state with themes of filiation and persecution, the hallucinations that dictated the travel behaviour, and the dissociative states manifested by depersonalisation and derealisation. It also emerges from this analysis that pathological travel often involves prolonged journeys on foot and without purpose. Thus, untreated mental illness plays a significant role in shaping and influencing individual and social behaviour. The results of this study have important implications for public health and migration policy. They highlight the need to integrate health assessments into migration management systems, particularly in regions serving as transit hubs for migrants. The research also highlights the need for culturally sensitive psychiatric interventions to address the interaction between pre-existing mental disorders and migration. This study contributes to a better understanding of the psychological dimensions of migration by highlighting the importance of addressing mental health as an integral part of humanitarian action. The knowledge gained paves the way for future research to explore this understudied aspect of migration on a broader scale.
基金supported by the Natural Science Research Project of Anhui Province University, No.2023AH040394 (to TY)Hefei Comprehensive National Science Center Leading Medicine and Frontier Technology Research Institute Project, No.2023IHM01073 (to TY)the Natural Science Foundation of Anhui Province, Nos.2308085QH258 (to JW), 2008085MH246 (to TY)。
文摘Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury.
基金supported by the Key Scientific Research Project of Hunan Education Department,China(No.23A0446)the Natural Science Foundation of Hunan Province,China(provinces and cities combined)(No.2022JJ50067)+1 种基金the Hunan Province Degree and Postgraduate Teaching Reform Research Project,China(No.2022JGYB182)the Scientific Research and Innovation Foundation of Hunan University of Technology(No.CX2314).
文摘A dual-wavelength ring-cavity erbium-doped fiber(EDF)laser is designed based on two polarization beam splitters(PBSs)and a polarization controller(PC)performing gain equalization and polarization hole burning(PHB)effect.At room temperature,a stable dual-wavelength laser and a multi-output port laser which can simultaneously emit single-wavelength lasing and dual-wavelength lasing are obtained.The signal-to-noise ratios(SNRs)for single-wavelength outputs were 54.70 dB and 57.10 dB,with power fluctuations less than 0.038 mW and 0.029 mW,respectively.For dual-wavelength lasing,the SNRs were 59.63 dB and 59.25 dB,with power fluctuations less than 0.018 mW and 0.008 mW,respectively.The center wavelength drift was less than 0.006 nm for both single-wavelength and dual-wavelength outputs.