The method of plasma current profile reconstruction using the polarimeter/interferometer(POINT) data from a simulated equilibrium is explored and validated.It is shown that the safety factor(q) profile can be gene...The method of plasma current profile reconstruction using the polarimeter/interferometer(POINT) data from a simulated equilibrium is explored and validated.It is shown that the safety factor(q) profile can be generally reconstructed from the external magnetic and POINT data.The reconstructed q profile is found to reasonably agree with the initial equilibriums.Comparisons of reconstructed q and density profiles using the magnetic data and the POINT data with 3%,5%and 10%random errors are investigated.The result shows that the POINT data could be used to a reasonably accurate determination of the q profile.展开更多
A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak....A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.展开更多
A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radia...A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radiation shielding is designed for the combination of polarimeter/interferometer and CO_(2)dispersion interferometer.Furthermore,neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO_(2)dispersion interferometer and the major material components of CFETR.The polarimeter/interferometer and CO_(2)dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors.The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding.Since the mirrors of CO_(2)dispersion interferometer are very close to the diagnostic first wall,shielding space is limited and the CO_(2)dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer.The dose rate after shutdown106s in the back-drawer structure has been estimated to be 83μSv h^(-1)when the radiation shield is filled in the diagnostic shielding modules,which is below the design threshold of 100μSv h^(-1).Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO_(2)dispersive interferometer in CFETR.展开更多
A multi-channel polarimeter-interferometer has been developed on the Keda Torus eXperiment(KTX)for the study of equilibrium dynamics and internal magnetic fluctuations.A three-wave technique based on terahertz solid-s...A multi-channel polarimeter-interferometer has been developed on the Keda Torus eXperiment(KTX)for the study of equilibrium dynamics and internal magnetic fluctuations.A three-wave technique based on terahertz solid-state sources(-650 GHz)is applied for simultaneous measurements of electron density and Faraday rotation angle.The output power of the microwave source is 2 mW.Faraday rotation effect using a rotating wave plate is tested with phase noise less than 0.8°,and the density phase noise is less than 0.9°.Measurement of Faraday rotation angle and density for discharges on KTX have demonstrated high sensitivity to internal MHD activities.展开更多
The J-TEXT three-wave polarimeter-interferometer system(POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium recons...The J-TEXT three-wave polarimeter-interferometer system(POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium reconstruction method.The phase resolution of a Faraday rotation angle has been improved from 0.1 to 0.06 degree in chords from–0.18 to 0.18 m(plasma minor radius),and the sawtooth oscillation behavior has been detected by Faraday rotation angle measurement.By combining the POLARIS measured data and the equilibrium and fitting code(EFIT),an upgraded equilibrium reconstruction method has been developed,which provides a more accurate temporal and spatial distribution of current density and electron density.By means of the optimized POLARIS and improved equilibrium reconstruction,variations of profiles with increasing density have been carried out,under both Ohmic and electron cyclotron resonance heating discharges.展开更多
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup...Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.展开更多
A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversio...A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversion method, evolution of the density profile analyzed by this method can quickly offer important information. This method has the advantage of fast calculation speed with the order of ten milliseconds per normal shot and it is capable of processing up to 1 MHz sampled data, which is helpful for studying density sawtooth instability and the disruption between shots. In the duration of a flat-top plasma current of usual ohmic discharges on J-TEXT, shape factor u is ranged from 4 to 5. When the disruption of discharge happens, the density profile becomes peaked and the shape factor u typically decreases to 1.展开更多
A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of dir...According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.展开更多
Full-Stokes polarimeters can detect the polarization states of light,which is critical for the next-generation optical and optoelectronic systems.Traditional full-Stokes polarimeters are either based on bulky optical ...Full-Stokes polarimeters can detect the polarization states of light,which is critical for the next-generation optical and optoelectronic systems.Traditional full-Stokes polarimeters are either based on bulky optical systems or complex metasurface structures,which cause the system complexity with unessential energy loss.Recently,filterless on-chip full-Stokes polarimeters have been demonstrated by using optical anisotropic materials which are able to detect the circularly polarized light.Nevertheless,those on-chip full-Stokes polarimeters have either the limited detection wavelength range or relatively poor device performance that need to be further improved.Here,we report the high performance broadband full-Stokes polarimeters based on rhenium disulfide(ReS_(2)).While the anisotropic structure of the ReS_(2)introduces the in-plane optical anisotropy for linearly polarized light(LP)detection,Schottky contacts formed by the ReS_(2)-Au could break the symmetry,which can detect circularly polarized(CP)light.By building a proper model,all four Stokes parameters can be extracted by using the ReS_(2)nanobelt device.The device delivers a photoresponsivity of 181 A/W,a detectivity of 6.8×10^(10)Jones and can sense the four Stokes parameters of incident light within a wide range of wavelength from 565-800 nm with reasonable average errors.We believe our study provides an alternative strategy to develop high performance broadband on-chip full-Stokes polarimeters.展开更多
In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean inten...In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.展开更多
Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on ...Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.展开更多
The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory si...The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries.展开更多
A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical mod...A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.展开更多
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc...The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.展开更多
A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high si...A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.展开更多
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young...A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.展开更多
A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filte...A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.展开更多
X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of sample...X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.展开更多
基金supported by the National Magnetic Confinement Fusion Program of China(Nos.2012GB101002,2014GB106002,2014GB103000,2013GB10200)National Natural Science Foundation of China(Nos.11105184,11205199 and 11375237)
文摘The method of plasma current profile reconstruction using the polarimeter/interferometer(POINT) data from a simulated equilibrium is explored and validated.It is shown that the safety factor(q) profile can be generally reconstructed from the external magnetic and POINT data.The reconstructed q profile is found to reasonably agree with the initial equilibriums.Comparisons of reconstructed q and density profiles using the magnetic data and the POINT data with 3%,5%and 10%random errors are investigated.The result shows that the POINT data could be used to a reasonably accurate determination of the q profile.
基金supported by the National Magnetic Confinement Fusion Science Programs of China(Nos.2010GB101002 and 2014GB109001)National Natural Science Foundation of China(Nos.11075048 and 11275059)
文摘A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.
基金the National MCF Energy R&D Program of China(Nos.2019YFE03040003 and 2017YFE0301205)Key Program of Research and Development of Hefei Science Center,CAS(No.2019HSC-KPRD001)supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu University。
文摘A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radiation shielding is designed for the combination of polarimeter/interferometer and CO_(2)dispersion interferometer.Furthermore,neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO_(2)dispersion interferometer and the major material components of CFETR.The polarimeter/interferometer and CO_(2)dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors.The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding.Since the mirrors of CO_(2)dispersion interferometer are very close to the diagnostic first wall,shielding space is limited and the CO_(2)dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer.The dose rate after shutdown106s in the back-drawer structure has been estimated to be 83μSv h^(-1)when the radiation shield is filled in the diagnostic shielding modules,which is below the design threshold of 100μSv h^(-1).Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO_(2)dispersive interferometer in CFETR.
基金supported by National Natural Science Foundation of China(No.12175227)the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘A multi-channel polarimeter-interferometer has been developed on the Keda Torus eXperiment(KTX)for the study of equilibrium dynamics and internal magnetic fluctuations.A three-wave technique based on terahertz solid-state sources(-650 GHz)is applied for simultaneous measurements of electron density and Faraday rotation angle.The output power of the microwave source is 2 mW.Faraday rotation effect using a rotating wave plate is tested with phase noise less than 0.8°,and the density phase noise is less than 0.9°.Measurement of Faraday rotation angle and density for discharges on KTX have demonstrated high sensitivity to internal MHD activities.
基金the National MCF Energy R&D Program of China(No.2018YFE0310300)National Natural Science Foundation of China(Nos.11905080 and 51821005)。
文摘The J-TEXT three-wave polarimeter-interferometer system(POLARIS),which measures timespace distribution of electron density and current density,has been optimized with both the optical system and the equilibrium reconstruction method.The phase resolution of a Faraday rotation angle has been improved from 0.1 to 0.06 degree in chords from–0.18 to 0.18 m(plasma minor radius),and the sawtooth oscillation behavior has been detected by Faraday rotation angle measurement.By combining the POLARIS measured data and the equilibrium and fitting code(EFIT),an upgraded equilibrium reconstruction method has been developed,which provides a more accurate temporal and spatial distribution of current density and electron density.By means of the optimized POLARIS and improved equilibrium reconstruction,variations of profiles with increasing density have been carried out,under both Ohmic and electron cyclotron resonance heating discharges.
基金Project supported by the National Key R&D Program of China (Grant Nos.2022YFA1603200 and 2022YFA1603203)the National Natural Science Foundation of China (Grant Nos.12075030,12135001,12175018,and 12325305)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA25030700)the Research Grants Council of Hong (Grant No.14307118)the Youth Interdisciplinary Team (Grant No.JCTD-2022-05)supported by the China Postdoctoral International Exchange Program。
文摘Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB106000,2014GB106002,and2014GB106003)National Natural Science Foundation of China(Nos.11275234,11375237 and 11505238)Scientific Research Grant of Hefei Science Center of CAS(No.2015SRG-HSC010)
文摘A method of fast data processing has been developed to rapidly obtain evolution of the electron density profile for a multichannel polarimeter-interferometer system(POLARIS)on J-TEXT. Compared with the Abel inversion method, evolution of the density profile analyzed by this method can quickly offer important information. This method has the advantage of fast calculation speed with the order of ten milliseconds per normal shot and it is capable of processing up to 1 MHz sampled data, which is helpful for studying density sawtooth instability and the disruption between shots. In the duration of a flat-top plasma current of usual ohmic discharges on J-TEXT, shape factor u is ranged from 4 to 5. When the disruption of discharge happens, the density profile becomes peaked and the shape factor u typically decreases to 1.
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
文摘According to the measurement principle of the traditional interferometer,a narrowband signal model is established and used,however,for wideband signals or multiple signals,this model is invalid.For the problems of direction finding with interferometer for wideband signals and multiple signals scene,a frequency domain phase interferometer is proposed and the concrete implementation scheme is given.The proposed method computes the phase difference in frequency domain,and finds multi-target results with judging the spectrum amplitude changing,and uses the frequency phase difference to compute the arrival angle.Theoretical analysis and simulation results show that the proposed method effectively solves the problem of the angle estimation with phase interferometer for wideband signals,and has good performance in multiple signals scene with nonoverlapping spectrum or partially overlapping.In addition,the wider the signal bandwidth,the better direction finding performance of this algorithm.
基金the support from the National Key Research and Development Program of China(2022YFB2803900 and 2018YFA0704403)NSFC(62074064)。
文摘Full-Stokes polarimeters can detect the polarization states of light,which is critical for the next-generation optical and optoelectronic systems.Traditional full-Stokes polarimeters are either based on bulky optical systems or complex metasurface structures,which cause the system complexity with unessential energy loss.Recently,filterless on-chip full-Stokes polarimeters have been demonstrated by using optical anisotropic materials which are able to detect the circularly polarized light.Nevertheless,those on-chip full-Stokes polarimeters have either the limited detection wavelength range or relatively poor device performance that need to be further improved.Here,we report the high performance broadband full-Stokes polarimeters based on rhenium disulfide(ReS_(2)).While the anisotropic structure of the ReS_(2)introduces the in-plane optical anisotropy for linearly polarized light(LP)detection,Schottky contacts formed by the ReS_(2)-Au could break the symmetry,which can detect circularly polarized(CP)light.By building a proper model,all four Stokes parameters can be extracted by using the ReS_(2)nanobelt device.The device delivers a photoresponsivity of 181 A/W,a detectivity of 6.8×10^(10)Jones and can sense the four Stokes parameters of incident light within a wide range of wavelength from 565-800 nm with reasonable average errors.We believe our study provides an alternative strategy to develop high performance broadband on-chip full-Stokes polarimeters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532113,11475170,11905041)Anhui Provincial Natural Science Foundation(Grant No.2208085MA18)Fundamental Research Funds for the Central Universities(Grant No.JZ2022HGTB0244)。
文摘In x-ray dark-field imaging using dual phase grating interferometer,multi-contrast signals are extracted from a set of acquired phase-stepping data by using the least-squares fitting algorithm.The extracted mean intensity,amplitude and visibility signals may be intrinsically biased.However,it is still unclear how large these biases are and how the data acquisition parameters influence the biases in the extracted signals.This work set out to address these questions.Analytical expressions of the biases of the extracted signals were theoretically derived by using a second-order Taylor series expansion.Extensive numerical simulations were performed to validate the theoretical results.It is illustrated that while the estimated mean intensity signal is always unbiased,the estimated amplitude and visibility signals are both positively biased.While the biases of the estimated amplitude signals are proportional to the inverse of the total number of phase steps,the biases of the estimated visibility signals are inversely proportional to the product of the total number of phase steps and the mean number of photons counted per phase step.Meanwhile,it is demonstrated that the dependence of the biases on the mean visibility is quite different from that of Talbot-Lau interferometer due to the difference in the intensity model.We expect that these results can be useful for data acquisition optimizations and interpretation of x-ray dark-field images.
文摘Temporal optics,which enables lossless manipulation of ultrafast pulses,offers a new dimension for the regulation of quantum optical fields.In this paper,we established a temporal Fourier transform(TF)system based on a four-wave mixing(FWM)time lens and constructed a full quantum theoretical model for the resulting temporal SU(1,1)interferometer.This interferometer has high temporal resolution,can impose interference in both time and frequency domains,and is sensitive to the phase derivative.By introducing linear time-varying phase modulation,we achieved sub-picosecond precision in temporal autocorrelation measurements and generatedan optical frequency comb with a fixed interval based on a feedback iteration mechanism.Theoretical analysis revealsthe crucial regulatory role of time-frequency coupling in quantum interference,providing novel solutions for ultrafast quantum imaging,temporal mode encoding,and the generation of optical frequency quantization.
基金supported by the National Natural Science Foundation of China(Grant Nos.11633001,11920101003,and 12205222 for S.H.)the Key Program of the National Natural Science Foundation of China(Grant No.12433001)+1 种基金the Strate-gic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23000000)the National Key Research and Development Program of China(Grant No.2021YFC2203001 for Z.C.Z.).
文摘The gravitational memory effect manifests gravitational nonlinearity,degenerate vacua,and asymptotic symmetries;its detection is considered challenging.We propose using a space-borne interferometer to detect memory signals from stellar-mass binary black holes(BBHs),typically targeted by ground-based detectors.We use DECIGO detector as an example.Over 5 years,DECIGO is estimated to detect approximately 2,036 memory signals(SNRs>3)from stellar-mass BBHs.Simulations used frequency-domain memory waveforms for direct SNR estimation.Predictions utilized a GWTC-3 constrained BBH population model(Power law+Peak mass,DEFAULT spin,Madau-Dickinson merger rate).The analysis used conservative lower merger rate limits and considered orbital eccentricity.The high detection rate stems from strong memory signals within DECIGO’s bandwidth and the abundance of stellar-mass BBHs.This substantial and conservative detection count enables statistical use of the memory effect for fundamental physics and astrophysics.DECIGO exemplifies that space interferometers may better detect memory signals from smaller mass binaries than their typical targets.Detectors in lower frequency bands are expected to find strong memory signals from∼10^(4)M⊙binaries.
基金supported in part by the National Natural Science Foundation of China(Nos.61735014 and 61927812)the Shaanxi Provincial Education Department(No.18JS093)+2 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2024JC-YBMS-530)the Operation Fund of Logging Key Laboratory of Group Company(No.2021DQ0107-11)the Graduate Student Innovation Fund of Xi’an Shiyou University(No.YCS23213193)。
文摘A compact and highly sensitive gas pressure and temperature sensor based on Fabry-Pérot interferometer(FPI)and fiber Bragg grating(FBG)is proposed and demonstrated experimentally in this paper.The theoretical model for pressure and temperature sensing is established.Building on this foundation,a novel micro silicon cavity sensor structure sensitive to pressure is devised downstream of an FBG.The concept of separate measurement and the mechanisms enhancing pressure sensitivity are meticulously analyzed,and the corresponding samples are fabricated.The experimental results indicate that the pressure sensitivity of the sensor is-747.849 nm/MPa in 0—100 k Pa and its linearity is 99.7%and it maintains good stability in 150 min.The sensor offers the advantages of compact size,robust construction,easy fabrication,and high sensitivity,making it potentially valuable for micro-pressure application.
基金Supported by the National Natural Science Foundation of China(61074162)the Ph.D.Program Foundation of Ministry of Education of China(200802870011)~~
文摘The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60677051 and No.10774193) and the National Key Basic Research Special Foundation (No.G2010CB923204).
文摘A wide-range and phase-locked Michelson interferometer technique is described. This technique combined with femtosecond laser is used to measure the spectrum of the rare-earth ion Nd:YVO4, which presents very high signal to noise ratio of interferometric intensity output and higher spectral resolution than traditional grating spectrophotometer.
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of ChinaChinese Academy of Sciences
文摘A distinct method to show a quantum object behaving both as wave and as particle is proposed and described in some detail. We make a systematic analysis using the elementary methodology of quantum mechanics upon Young's two-slit interferometer and the Mach-Zehnder two-arm interferometer with the focus placed on how to measure the interference pattern (wave nature) and the which-way information (particle nature) of quantum objects. We design several schemes to simultaneously acquire the which-way information for an individual quantum object and the high-contrast interference pattern for an ensemble of these quantum objects by placing two sets of measurement instruments that are well separated in space and whose perturbation of each other is negligibly small within the interferometer at the same time. Yet, improper arrangement and cooperation of these two sets of measurement instruments in the interferometer would lead to failure of simultaneous observation of wave and particle behaviors. The internal freedoms of quantum objects could be harnessed to probe both the which-way information and the interference pattern for the center-of-mass motion. That quantum objects can behave beyond the wave-particle duality and the complementarity principle would stimulate new conceptual examination and exploration of quantum theory at a deeper level.
基金Project supported by the Innovation Program of Education Commission of Shanghai Municipality (Grant No.10YZ19)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Shanghai Key Laboratory of Specialty Fiber Optics and Optical Access Networks (Grant No.SKLSFO200903)
文摘A distributed optical fiber disturbance detection system consisted of a Sagnac interferometer and a Mach-Zehnder interferometer is demonstrated. Two interferometers outputs are connected to an electric band-pass filter via a detector respectively. The central frequencies of the two filters are selected adaptively according to the disturbance frequency. The disturbance frequency is obtained by either frequency spectrum of the two interferometers outputs. An alarm is given out only when the Sagnac interferometer output is changed. A disturbance position is determined by calculating a time difference with a cross-correlation method between the filter output connected to the Sagnac interferometer and derivative of the filter output connected to the Mach-Zehnder interferometer. The frequency spectrum, derivative and cross-correlation are obtained by a signal processing system. Theory analysis and simulation results are presented. They show that the system structure and location method are effective, accurate, and immune to environmental variations.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2012CB825800)the Science Fund for Creative Research Groups,China(Grant No.11321503)+1 种基金the National Natural Science Foundation of China(Grant Nos.11179004,10979055,11205189,and 11205157)the Japan–Asia Youth Exchange Program in Science(SAKURA Exchange Program in Science)Administered by the Japan Science and Technology Agency
文摘X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a con- ventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus beating tremendous potential for future clinical diagnosis. In this work, by changing the accel- erating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Ex- perimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ~ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum.