Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser...Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.展开更多
The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve ...The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve the secrecy rate.Firstly,a secrecy coding model based on AN is presented,where the confidential bits of last transmission code block are adopted as AN to inject into the current codeword.In this way,the AN can only be eliminated from the jammed codeword by the legitimate users.Since the AN is shorter than the codeword,we then develop a suboptimal jamming positions selecting algorithm with the goal of maximizing the bit error rate of the eavesdropper.Theoretical and simulation results demonstrate that the proposed algorithm outperforms the random selection method and the method without AN.展开更多
基金supported in part by National Natural Science Foundation of China (no. 61571373, no. 61501383, no. U1734209, no. U1709219)in part by Key International Cooperation Project of Sichuan Province (no. 2017HH0002)+2 种基金in part by Marie Curie Fellowship (no. 792406)in part by the National Science and Technology Major Project under Grant 2016ZX03001018-002in part by NSFC China-Swedish project (no. 6161101297)
文摘Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.
基金supported in part by China’s High-Tech Research and Development Program(863 Program) under Grant No.2015AA01A708National Science Foundation for Young Scientists of China under Grant No.61501516
文摘The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve the secrecy rate.Firstly,a secrecy coding model based on AN is presented,where the confidential bits of last transmission code block are adopted as AN to inject into the current codeword.In this way,the AN can only be eliminated from the jammed codeword by the legitimate users.Since the AN is shorter than the codeword,we then develop a suboptimal jamming positions selecting algorithm with the goal of maximizing the bit error rate of the eavesdropper.Theoretical and simulation results demonstrate that the proposed algorithm outperforms the random selection method and the method without AN.