期刊文献+
共找到11,869篇文章
< 1 2 250 >
每页显示 20 50 100
Design Discussion of a Wireless Fire Alarm System Based on Data Fusion Technology 被引量:1
1
作者 Qun Wu Jinyang Wu 《Journal of Electronic Research and Application》 2025年第2期58-64,共7页
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi... This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system. 展开更多
关键词 data fusion technology Fire alarm system Wireless alarm Hardware design Software design
在线阅读 下载PDF
Failure rate analysis and maintenance plan optimization method for civil aircraft parts based on data fusion
2
作者 Kang CAO Yongjie ZHANG Jianfei FENG 《Chinese Journal of Aeronautics》 2025年第1期306-324,共19页
In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.... In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis. 展开更多
关键词 Small sample data data fusion Failure rate Maintenance planning Aircraft parts
原文传递
Comparison of two data fusion methods from Sentinel-3 and Himawari-9 data for snow cover monitoring in mountainous areas
3
作者 RuiRui Yang YanLi Zhang +2 位作者 Qi Wei FengYang Liu KeGong Li 《Research in Cold and Arid Regions》 2025年第3期159-171,共13页
Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challen... Snow cover in mountainous areas is characterized by high reflectivity,strong spatial heterogeneity,rapid changes,and susceptibility to cloud interference.However,due to the limitations of a single sensor,it is challenging to obtain high-resolution satellite remote sensing data for monitoring the dynamic changes of snow cover within a day.This study focuses on two typical data fusion methods for polar-orbiting satellites(Sentinel-3 SLSTR)and geostationary satellites(Himawari-9 AHI),and explores the snow cover detection accuracy of a multitemporal cloud-gap snow cover identification model(Loose data fusion)and the ESTARFM(Spatiotemporal data fusion).Taking the Qilian Mountains as the research area,the accuracy of two data fusion results was verified using the snow cover extracted from Landsat-8 SR products.The results showed that both data fusion models could effectively capture the spatiotemporal variations of snow cover,but the ESTARFM demonstrated superior performance.It not only obtained fusion images at any target time,but also extracted snow cover that was closer to the spatial distribution of real satellite images.Therefore,the ESTARFM was utilized to fuse images for hourly reconstruction of the snow cover on February 14–15,2023.It was found that the maximum snow cover area of this snowfall reached 83.84%of the Qilian Mountains area,and the melting rate of the snow was extremely rapid,with a change of up to 4.30%per hour of the study area.This study offers reliable high spatiotemporal resolution satellite remote sensing data for monitoring snow cover changes in mountainous areas,contributing to more accurate and timely assessments. 展开更多
关键词 Snow cover data fusion Sentinel-3 Himawari-9
在线阅读 下载PDF
Dynamic UAV data fusion and deep learning for improved maize phenological-stage tracking
4
作者 Ziheng Feng Jiliang Zhao +8 位作者 Liunan Suo Heguang Sun Huiling Long Hao Yang Xiaoyu Song Haikuan Feng Bo Xu Guijun Yang Chunjiang Zhao 《The Crop Journal》 2025年第3期961-974,共14页
Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time... Near real-time maize phenology monitoring is crucial for field management,cropping system adjustments,and yield estimation.Most phenological monitoring methods are post-seasonal and heavily rely on high-frequency time-series data.These methods are not applicable on the unmanned aerial vehicle(UAV)platform due to the high cost of acquiring time-series UAV images and the shortage of UAV-based phenological monitoring methods.To address these challenges,we employed the Synthetic Minority Oversampling Technique(SMOTE)for sample augmentation,aiming to resolve the small sample modelling problem.Moreover,we utilized enhanced"separation"and"compactness"feature selection methods to identify input features from multiple data sources.In this process,we incorporated dynamic multi-source data fusion strategies,involving Vegetation index(VI),Color index(CI),and Texture features(TF).A two-stage neural network that combines Convolutional Neural Network(CNN)and Long Short-Term Memory Network(LSTM)is proposed to identify maize phenological stages(including sowing,seedling,jointing,trumpet,tasseling,maturity,and harvesting)on UAV platforms.The results indicate that the dataset generated by SMOTE closely resembles the measured dataset.Among dynamic data fusion strategies,the VI-TF combination proves to be most effective,with CI-TF and VI-CI combinations following behind.Notably,as more data sources are integrated,the model's demand for input features experiences a significant decline.In particular,the CNN-LSTM model,based on the fusion of three data sources,exhibited remarkable reliability when validating the three datasets.For Dataset 1(Beijing Xiaotangshan,2023:Data from 12 UAV Flight Missions),the model achieved an overall accuracy(OA)of 86.53%.Additionally,its precision(Pre),recall(Rec),F1 score(F1),false acceptance rate(FAR),and false rejection rate(FRR)were 0.89,0.89,0.87,0.11,and 0.11,respectively.The model also showed strong generalizability in Dataset 2(Beijing Xiaotangshan,2023:Data from 6 UAV Flight Missions)and Dataset 3(Beijing Xiaotangshan,2022:Data from 4 UAV Flight Missions),with OAs of 89.4%and 85%,respectively.Meanwhile,the model has a low demand for input featu res,requiring only 54.55%(99 of all featu res).The findings of this study not only offer novel insights into near real-time crop phenology monitoring,but also provide technical support for agricultural field management and cropping system adaptation. 展开更多
关键词 Near real-time Maize phenology Deep learning UAV Multi-source data fusion
在线阅读 下载PDF
Prediction Method for Carbon Emission of Hobbing Based on Cross-Process Data Fusion
5
作者 Qian Yi Yusong Luo +2 位作者 Chunhui Hu Congbo Li Shuping Yi 《Chinese Journal of Mechanical Engineering》 2025年第2期120-137,共18页
Accurate prediction of manufacturing carbon emissions is of great significance for subsequent low-carbon optimization.To improve the accuracy of carbon emission prediction with insufficient hobbing data,combining the ... Accurate prediction of manufacturing carbon emissions is of great significance for subsequent low-carbon optimization.To improve the accuracy of carbon emission prediction with insufficient hobbing data,combining the advantages of improved algorithm and supplementary data,a method of carbon emission prediction of hobbing based on cross-process data fusion was proposed.Firstly,we analyzed the similarity of machining process and manufacturing characteristics and selected milling data as the fusion material for hobbing data.Then,the adversarial learning was used to reduce the difference between data from the two processes,so as to realize the data fusion at the characteristic level.After that,based on Meta-Transfer Learning method,the carbon emission prediction model of hobbing was established.The effectiveness and superiority of the proposed method were verified by case analysis and comparison.The prediction accuracy of the proposed method is better than other methods across different data sizes. 展开更多
关键词 Gear hobbing Carbon emission prediction data fusion Meta-transfer learning
在线阅读 下载PDF
Dynamic Characteristic Testing of Wind Turbine Structure Based on Visual Monitoring Data Fusion
6
作者 Wenhai Zhao Wanrun Li +2 位作者 Ximei Li Shoutu Li Yongfeng Du 《Structural Durability & Health Monitoring》 2025年第3期593-611,共19页
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a... Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures. 展开更多
关键词 Structural health monitoring dynamic characteristics computer vision vibration monitoring data fusion
在线阅读 下载PDF
Class-Imbalanced Machinery Fault Diagnosis using Heterogeneous Data Fusion Support Tensor Machine
7
作者 Zhishan Min Minghui Shao +1 位作者 Haidong Shao Bin Liu 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期11-21,共11页
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli... The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method. 展开更多
关键词 class-imbalanced fault diagnosis feature tensor heterogeneous data fusion support tensor machine
在线阅读 下载PDF
Risk Prediction of Tunnel Water and Mud Inrush Based on Decision-Level Fusion of Multisource Data
8
作者 Shi-shu Zhang Peng Wang +4 位作者 Hua-bo Xiao Huai-bing Wang Yi-guo Xue Wei-dong Chen Kai Zhang 《Applied Geophysics》 2025年第2期472-487,559,560,共18页
This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was... This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data.A risk prediction indicator system was established for water and mud inrush in tunnels by analyzing advanced prediction data for specifi c tunnel segments.Additionally,the indicator weights were determined using the analytic hierarchy process combined with the Huber weighting method.Subsequently,a multisource data decision-layer fusion algorithm was utilized to generate fused imaging results for tunnel water and mud inrush risk predictions.Meanwhile,risk analysis was performed for different tunnel sections to achieve spatial and temporal complementarity within the indicator system and optimize redundant information.Finally,model feasibility was validated using the CZ Project Sejila Mountain Tunnel segment as a case study,yielding favorable risk prediction results and enabling effi cient information fusion and support for construction decision-making. 展开更多
关键词 Tunnel water and mud inrush prediction methods risk indicators multisource data decision-level fusion
在线阅读 下载PDF
Multisource Data Fusion Using MLP for Human Activity Recognition
9
作者 Sujittra Sarakon Wansuree Massagram Kreangsak Tamee 《Computers, Materials & Continua》 2025年第2期2109-2136,共28页
This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, ... This research investigates the application of multisource data fusion using a Multi-Layer Perceptron (MLP) for Human Activity Recognition (HAR). The study integrates four distinct open-source datasets—WISDM, DaLiAc, MotionSense, and PAMAP2—to develop a generalized MLP model for classifying six human activities. Performance analysis of the fused model for each dataset reveals accuracy rates of 95.83 for WISDM, 97 for DaLiAc, 94.65 for MotionSense, and 98.54 for PAMAP2. A comparative evaluation was conducted between the fused MLP model and the individual dataset models, with the latter tested on separate validation sets. The results indicate that the MLP model, trained on the fused dataset, exhibits superior performance relative to the models trained on individual datasets. This finding suggests that multisource data fusion significantly enhances the generalization and accuracy of HAR systems. The improved performance underscores the potential of integrating diverse data sources to create more robust and comprehensive models for activity recognition. 展开更多
关键词 Multisource data fusion human activity recognition multi-layer perceptron(MLP) artificial intelligent
在线阅读 下载PDF
Evaluation of Bird-watching Spatial Suitability Under Multi-source Data Fusion: A Case Study of Beijing Ming Tombs Forest Farm
10
作者 YANG Xin YUE Wenyu +1 位作者 HE Yuhao MA Xin 《Journal of Landscape Research》 2025年第3期59-64,共6页
Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from... Taking the Ming Tombs Forest Farm in Beijing as the research object,this research applied multi-source data fusion and GIS heat-map overlay analysis techniques,systematically collected bird observation point data from the Global Biodiversity Information Facility(GBIF),population distribution data from the Oak Ridge National Laboratory(ORNL)in the United States,as well as information on the composition of tree species in suitable forest areas for birds and the forest geographical information of the Ming Tombs Forest Farm,which is based on literature research and field investigations.By using GIS technology,spatial processing was carried out on bird observation points and population distribution data to identify suitable bird-watching areas in different seasons.Then,according to the suitability value range,these areas were classified into different grades(from unsuitable to highly suitable).The research findings indicated that there was significant spatial heterogeneity in the bird-watching suitability of the Ming Tombs Forest Farm.The north side of the reservoir was generally a core area with high suitability in all seasons.The deep-aged broad-leaved mixed forests supported the overlapping co-existence of the ecological niches of various bird species,such as the Zosterops simplex and Urocissa erythrorhyncha.In contrast,the shallow forest-edge coniferous pure forests and mixed forests were more suitable for specialized species like Carduelis sinica.The southern urban area and the core area of the mausoleums had relatively low suitability due to ecological fragmentation or human interference.Based on these results,this paper proposed a three-level protection framework of“core area conservation—buffer zone management—isolation zone construction”and a spatio-temporal coordinated human-bird co-existence strategy.It was also suggested that the human-bird co-existence space could be optimized through measures such as constructing sound and light buffer interfaces,restoring ecological corridors,and integrating cultural heritage elements.This research provided an operational technical approach and decision-making support for the scientific planning of bird-watching sites and the coordination of ecological protection and tourism development. 展开更多
关键词 Multi-source data fusion GIS heat map Kernel density analysis bird-watching spot planning Habitat suitability
在线阅读 下载PDF
Multi-scale intelligent fusion and dynamic validation for high-resolution seismic data processing in drilling
11
作者 YUAN Sanyi XU Yanwu +2 位作者 XIE Renjun CHEN Shuai YUAN Junliang 《Petroleum Exploration and Development》 2025年第3期680-691,共12页
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol... During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency. 展开更多
关键词 high-resolution seismic data processing while-drilling update while-drilling logging multi-source information fusion thin-bed weak reflection artificial intelligence modeling
在线阅读 下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
12
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
在线阅读 下载PDF
A Power Data Anomaly Detection Model Based on Deep Learning with Adaptive Feature Fusion
13
作者 Xiu Liu Liang Gu +3 位作者 Xin Gong Long An Xurui Gao Juying Wu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4045-4061,共17页
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi... With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed. 展开更多
关键词 data alignment dimension reduction feature fusion data anomaly detection deep learning
在线阅读 下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
14
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
Parameter Estimation of a Valve-Controlled Cylinder System Model Based on Bench Test and Operating Data Fusion
15
作者 Deying Su Shaojie Wang +3 位作者 Haojing Lin Xiaosong Xia Yubing Xu Liang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期247-263,共17页
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ... The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies. 展开更多
关键词 Valve-controlled cylinder system Parameter estimation The Bayesian theory data fusion method Weight coefficients
在线阅读 下载PDF
Optimized air-ground data fusion method for mine slope modeling
16
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
原文传递
Data augmentation method for light guide plate based on improved CycleGAN
17
作者 GONG Yefei YAN Chao +2 位作者 XIAO Ming LU Mingli GAO Hua 《Optoelectronics Letters》 2025年第9期555-561,共7页
An improved cycle-consistent generative adversarial network(CycleGAN) method for defect data augmentation based on feature fusion and self attention residual module is proposed to address the insufficiency of defect s... An improved cycle-consistent generative adversarial network(CycleGAN) method for defect data augmentation based on feature fusion and self attention residual module is proposed to address the insufficiency of defect sample data for light guide plate(LGP) in production,as well as the problem of minor defects.Two optimizations are made to the generator of CycleGAN:fusion of low resolution features obtained from partial up-sampling and down-sampling with high-resolution features,combination of self attention mechanism with residual network structure to replace the original residual module.Qualitative and quantitative experiments were conducted to compare different data augmentation methods,and the results show that the defect images of the LGP generated by the improved network were more realistic,and the accuracy of the you only look once version 5(YOLOv5) detection network for the LGP was improved by 5.6%,proving the effectiveness and accuracy of the proposed method. 展开更多
关键词 feature fusion self attention mec data augmentation light guide plate lgp cyclegan fusion low resolution features defect data augmentation self attention residual module minor defectstwo
原文传递
An Efficient and Verifiable Data Aggregation Protocol with Enhanced Privacy Protection
18
作者 Yiming Zhang Wei Zhang Cong Shen 《Computers, Materials & Continua》 2025年第11期3185-3211,共27页
Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protectio... Distributed data fusion is essential for numerous applications,yet faces significant privacy security challenges.Federated learning(FL),as a distributed machine learning paradigm,offers enhanced data privacy protection and has attracted widespread attention.Consequently,research increasingly focuses on developing more secure FL techniques.However,in real-world scenarios involving malicious entities,the accuracy of FL results is often compromised,particularly due to the threat of collusion between two servers.To address this challenge,this paper proposes an efficient and verifiable data aggregation protocol with enhanced privacy protection.After analyzing attack methods against prior schemes,we implement key improvements.Specifically,by incorporating cascaded random numbers and perturbation terms into gradients,we strengthen the privacy protection afforded by polynomial masking,effectively preventing information leakage.Furthermore,our protocol features an enhanced verification mechanism capable of detecting collusive behaviors between two servers.Accuracy testing on the MNIST and CIFAR-10 datasets demonstrates that our protocol maintains accuracy comparable to the Federated Averaging Algorithm.In scheme efficiency comparisons,while incurring only a marginal increase in verification overhead relative to the baseline scheme,our protocol achieves an average improvement of 93.13% in privacy protection and verification overhead compared to the state-of-the-art scheme.This result highlights its optimal balance between overall overhead and functionality.A current limitation is that the verificationmechanismcannot precisely pinpoint the source of anomalies within aggregated results when server-side malicious behavior occurs.Addressing this limitation will be a focus of future research. 展开更多
关键词 data fusion federated learning privacy protection MASKING verifiability fault tolerance
在线阅读 下载PDF
Low-Rank Adapter Layers and Bidirectional Gated Feature Fusion for Multimodal Hateful Memes Classification
19
作者 Youwei Huang Han Zhong +1 位作者 Cheng Cheng Yijie Peng 《Computers, Materials & Continua》 2025年第7期1863-1882,共20页
Hateful meme is a multimodal medium that combines images and texts.The potential hate content of hateful memes has caused serious problems for social media security.The current hateful memes classification task faces ... Hateful meme is a multimodal medium that combines images and texts.The potential hate content of hateful memes has caused serious problems for social media security.The current hateful memes classification task faces significant data scarcity challenges,and direct fine-tuning of large-scale pre-trained models often leads to severe overfitting issues.In addition,it is a challenge to understand the underlying relationship between text and images in the hateful memes.To address these issues,we propose a multimodal hateful memes classification model named LABF,which is based on low-rank adapter layers and bidirectional gated feature fusion.Firstly,low-rank adapter layers are adopted to learn the feature representation of the new dataset.This is achieved by introducing a small number of additional parameters while retaining prior knowledge of the CLIP model,which effectively alleviates the overfitting phenomenon.Secondly,a bidirectional gated feature fusion mechanism is designed to dynamically adjust the interaction weights of text and image features to achieve finer cross-modal fusion.Experimental results show that the method significantly outperforms existing methods on two public datasets,verifying its effectiveness and robustness. 展开更多
关键词 Hateful meme multimodal fusion multimodal data deep learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部