With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for ...With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for advanced point-based processing and editing. In this paper, we present an interactive method for blending point-based geometries by dragging-and- dropping one point-based model onto another model’s surface metaphor. We first calculate a blending region based on the polygon of interest when the user drags-and-drops the model. Radial basis function is used to construct an implicit surface which smoothly interpolates with the transition regions. Continuing the drag-and-drop operation will make the system recalculate the blending regions and reconstruct the transition regions. The drag-and-drop operation can be compound in a constructive solid geometry (CSG) manner to interactively construct a complex point-based model from multiple simple ones. Experimental results showed that our method generates good quality transition regions between two raw point clouds and can effectively reduce the rate of overlapping during the blending.展开更多
There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model s...There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software(Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50 th, 95 th, 99 th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.展开更多
Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Ado...Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Adopting minimum polygonal approximation (MPP) to demonstrate the contour of concave cloud, cloud features are described and the subdivision lines of convex decomposition for the concave clouds are determined by the centroid point scattering model and centroid angle func- tion, which realizes the convex decomposition of concave cloud. The result of MATLAB simulation indicates that the proposed algorithm can accurately detect cloud contour comers and recognize the concave points. The proposed decomposition algorithm has advantages of less time complexity and decomposition part numbers compared to traditional algorithms. So the established model can make the convex decomposition of complex concave clouds completely and quickly, which is available for the existing prediction algorithm for the ultra-short-term power output of distributed PV system based on the cloud features.展开更多
using close-packed lattice models,a continuous thermodynamic framework is presented forphase-equilibrium calculations for binary solutions with a polydisperse polymer solute.An expressionfor the Helmholtz function of ...using close-packed lattice models,a continuous thermodynamic framework is presented forphase-equilibrium calculations for binary solutions with a polydisperse polymer solute.An expressionfor the Helmholtz function of mixing is based on the revised Freed model developed previously.Asize parameter c_r and an energy parameter ε are used;the former can be temperature dependent,while the latter can depend on both temperature and chain-length of the polymer.The discretemulticomponent approach is adopted to derive expressions for chemical potentials,spinodals and criti-cal points.The continuous distribution function is then used in calculations of moments occurring inthose expressions.Computation programs are established for cloud-point-curve,shadow-curve,spinodal and critical-point calculations for polymer solutions with standard distribution or arbitrarydistribution of polymer.In the latter case,the derivative method developed previously is applied.lllustrations for phase-equilibrium calculations are展开更多
Using lattice-fluid model, a continuous thermodynamic framework is presented for phase-equilibrium calculations for binary solutions with a polydisperse polymer solute. A two-step process is designed to form a real po...Using lattice-fluid model, a continuous thermodynamic framework is presented for phase-equilibrium calculations for binary solutions with a polydisperse polymer solute. A two-step process is designed to form a real polymer solution containing a solvent and a polydisperse polymer solute occupying a volume at fixed temperature and pressure. In the first step, close-packed pure components including solvent and polymers with different molar masses or different chain lengths are mixed to form a closed-packed polymer solution. In the second step, the close-packed mixture, considered to be a pseudo-pure substance is mixed with holes to form a real polymer solution with a volume dependent on temperature and pressure. Revised Freed's model developed previously is adopted for both steps. Besides pure-component parameters, a binary size parameter cr and a binary energy parameter e12 are used. They are all temperature dependent. The discrete-multicomponent approach is adopted to derive expressions for chemical potentials, spinodals and critical points. The continuous distribution function is then used in calculations of moments occurring in those expressions. Computation procedures are established for cloud-point-curve, shadow-curve, spinodal and critical-point calculations using standard distribution or arbitrary distribution on molar mass or on chain length. Illustrative examples are also presented.展开更多
【目的】解决钢箱系杆拱桥的钢拱肋在施工过程中精度控制难度大和耗时长的问题。【方法】以某钢箱系杆拱桥为工程背景,采用建筑信息模型(building information modeling,BIM)及3D激光扫描技术,对拱肋钢构件在加工制作与拼接过程中的质...【目的】解决钢箱系杆拱桥的钢拱肋在施工过程中精度控制难度大和耗时长的问题。【方法】以某钢箱系杆拱桥为工程背景,采用建筑信息模型(building information modeling,BIM)及3D激光扫描技术,对拱肋钢构件在加工制作与拼接过程中的质量检测进行信息化管控。【结果】BIM技术结合3D激光扫描技术可快速地检测钢拱肋构件的质量并监测拱肋施工线形;钢箱拱肋构件的最大制作误差在1.2 mm以内,构件在拼接过程中的最大误差在1.1 mm以内,以上误差均满足设计规范的要求;与传统检测方法相比,点云数据在各坐标轴方向的偏差为1.0~3.0 mm,平均偏差为1.2~1.5 mm,具有较高的可靠性。【结论】基于BIM+3D激光扫描技术,可实现钢箱拱肋构件施工过程中拱肋线形质量的动态管控。展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60473106 and 60333010)the Program for Chang-jiang Scholars and Innovative Research Team in University (No. IRT0652), China
文摘With the rapid development of 3D digital photography and 3D digital scanning devices, massive amount of point samples can be generated in acquisition of complex, real-world objects, and thus create an urgent need for advanced point-based processing and editing. In this paper, we present an interactive method for blending point-based geometries by dragging-and- dropping one point-based model onto another model’s surface metaphor. We first calculate a blending region based on the polygon of interest when the user drags-and-drops the model. Radial basis function is used to construct an implicit surface which smoothly interpolates with the transition regions. Continuing the drag-and-drop operation will make the system recalculate the blending regions and reconstruct the transition regions. The drag-and-drop operation can be compound in a constructive solid geometry (CSG) manner to interactively construct a complex point-based model from multiple simple ones. Experimental results showed that our method generates good quality transition regions between two raw point clouds and can effectively reduce the rate of overlapping during the blending.
文摘There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software(Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50 th, 95 th, 99 th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.
基金Supported by the National High Technology Research and Development Programme of China(No.2013AA050405)Doctoral Fund of Ministry of Education(No.20123317110004)+1 种基金Foundation of Zhejiang Province Key Science and Technology Innovation Team(No.2011R50011)the Natural Science Foundation of Zhejiang Province(No.LY15E070004)
文摘Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Adopting minimum polygonal approximation (MPP) to demonstrate the contour of concave cloud, cloud features are described and the subdivision lines of convex decomposition for the concave clouds are determined by the centroid point scattering model and centroid angle func- tion, which realizes the convex decomposition of concave cloud. The result of MATLAB simulation indicates that the proposed algorithm can accurately detect cloud contour comers and recognize the concave points. The proposed decomposition algorithm has advantages of less time complexity and decomposition part numbers compared to traditional algorithms. So the established model can make the convex decomposition of complex concave clouds completely and quickly, which is available for the existing prediction algorithm for the ultra-short-term power output of distributed PV system based on the cloud features.
文摘using close-packed lattice models,a continuous thermodynamic framework is presented forphase-equilibrium calculations for binary solutions with a polydisperse polymer solute.An expressionfor the Helmholtz function of mixing is based on the revised Freed model developed previously.Asize parameter c_r and an energy parameter ε are used;the former can be temperature dependent,while the latter can depend on both temperature and chain-length of the polymer.The discretemulticomponent approach is adopted to derive expressions for chemical potentials,spinodals and criti-cal points.The continuous distribution function is then used in calculations of moments occurring inthose expressions.Computation programs are established for cloud-point-curve,shadow-curve,spinodal and critical-point calculations for polymer solutions with standard distribution or arbitrarydistribution of polymer.In the latter case,the derivative method developed previously is applied.lllustrations for phase-equilibrium calculations are
文摘Using lattice-fluid model, a continuous thermodynamic framework is presented for phase-equilibrium calculations for binary solutions with a polydisperse polymer solute. A two-step process is designed to form a real polymer solution containing a solvent and a polydisperse polymer solute occupying a volume at fixed temperature and pressure. In the first step, close-packed pure components including solvent and polymers with different molar masses or different chain lengths are mixed to form a closed-packed polymer solution. In the second step, the close-packed mixture, considered to be a pseudo-pure substance is mixed with holes to form a real polymer solution with a volume dependent on temperature and pressure. Revised Freed's model developed previously is adopted for both steps. Besides pure-component parameters, a binary size parameter cr and a binary energy parameter e12 are used. They are all temperature dependent. The discrete-multicomponent approach is adopted to derive expressions for chemical potentials, spinodals and critical points. The continuous distribution function is then used in calculations of moments occurring in those expressions. Computation procedures are established for cloud-point-curve, shadow-curve, spinodal and critical-point calculations using standard distribution or arbitrary distribution on molar mass or on chain length. Illustrative examples are also presented.