Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geoch...Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U-Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies(mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton,involve lower T and/or higher P conditions at the magmatic source according to experimental studies.These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 士 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 土 1.5 Ma to188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages(around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for noninherited ages and gave very close mean ages(within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure,geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U-Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units,together with the evidences depicted by the geochemistry and field relations.展开更多
The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xie...The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xiema and Xiangzikou plutons in Hunan Province, and 205.3±1.6 Ma for biotite granite from the Napeng pluton, western Guandong Province, respectively, showing a similar late Indosinian age of crystallization. In combination with other geochronological data from Indosinian granites within the South China Block (SCB), it is proposed that those late Indosinian granites with an age of -210 Ma and the early Indosinian granites (230-245 Ma) have the similar petrogenesis in identical tectonic setting. The Indosinian granites within the SCB might be the products of anatexis of the thickening crust in a compressive regime. These data provide a further understanding for the temporal and spatial distribution of the Indosinian granites and the dynamic evolution of the SCB.展开更多
It is generally considered that granitic plutons are forcefully emplaced in acompressional setting and permissively emplaced in an extensional setting. This paper, however,shows that syn-kinematic (extensional) ellipt...It is generally considered that granitic plutons are forcefully emplaced in acompressional setting and permissively emplaced in an extensional setting. This paper, however,shows that syn-kinematic (extensional) elliptic granitic plutons in the Yagan-Onch Hayrhanmetamorphic core complex (MCC) have relatively strong forceful emplacement, which are indicated by(1) concentric distribution of the rock units, (2) a strain pattern with strong strains on themargins and low strains at the centre of a pluton, and particularly (3) syn-emplacement shorteningof the host rocks within the aureole. The strain analysis for the host rocks shows that thehost-rock ductile shortening, i.e. forceful emplacement, provides about 16-24 percent of theemplacement space for the present plutons. All these suggest that forceful emplacement occurs notonly in a compressional tectonic setting, but also in an extensional setting. This study furtherdemonstrates the significance of the multiple emplacement of granitic plutons and provides newinformation about the causality between granitic magmatism and the formation of the MCC and itsdynamics.展开更多
We present results of field studies for magmatic processes of 2.57-2.52 Ga calc-alkaline plutonic bodies from three corridors in the eastern Dharwar craton(EDC)corresponding to different crustal levels.At deeper level...We present results of field studies for magmatic processes of 2.57-2.52 Ga calc-alkaline plutonic bodies from three corridors in the eastern Dharwar craton(EDC)corresponding to different crustal levels.At deeper levels plutons are bounded by thick zone of migmatites with numerous melt filled shear bands which often overprinted by incipient charnockite.On the other hand in the mid-to-upper crustal levels plutons show relatively sharp contacts and truncates the adjoining basement.The plutons are composite which comprises voluminous intrusive monzodiorite,quartz-monzonite and porphyritic monzogranite in the central part and minor anatectic granites or diatexite at periphery.Numerous xenoliths,Mafic Magmatic Enclaves(MME),disrupted trains of synplutonic mafic dykes are found in both intrusive and anatectic facies.The plutons show magmatic as well as solid-state plastic fabrics defined by magmatic flow banding and C-S fabrics respectively.Crustal scale shear zone network comprising early melt filled NE trending hot ductile dextral shear bands and slightly later colder NW trending sinistral shear bands defined by rotation of mafic boudins,phenocrysts and C-S fabrics.The internal architecture of plutons is attributed to the crustal scale magma chamber processes where voluminous intrusive magmas emplaced into the crust caused reworking of surrounding basement resulting in production of anatectic magmas.Crystallization of voluminous intrusive magmas in the deep crust probably caused development of fractures to mantle depth causing decompression melting of mantle and resultant mafic magmas penetrated the crystallizing host in magma chambers.Field evidences together with published ages and Nd isotope data reveal a spatial link between late Archaean magmatic accretion,reworking and cratonization.展开更多
The Kashan plutons are situated in the central part of Urumieh-Dokhtar magmatic arc recording subduction-related magmatism within the Alpine-Himalayan orogeny in Iran.These rocks consist of different calc-alkaline plu...The Kashan plutons are situated in the central part of Urumieh-Dokhtar magmatic arc recording subduction-related magmatism within the Alpine-Himalayan orogeny in Iran.These rocks consist of different calc-alkaline plutonic rocks including gabbro,gabbroic diorite,microdiorite,monzodiorite,tonalite,granodiorite,and granite.The plutons were emplaced into the Jurassic sedimentary units(Shemshak Formation)and the Eocene calc-alkaline volcanic and pyroclastic rocks.New U-Pb zircon ages show that the Kashan plutons formed during two main periods at 35.20±0.71 Ma in the Late Eocene(Priabonian)and at 18.90±0.84,19.26±0.83,19.30±1.2,and 17.3±1.8 Ma in the Early Miocene(Burdigalian).The reported events in the Kashan plutons imply the final phases of subductionrelated magmatism before the collision which happened between the Arabian and Iranian plates in the Middle Miocene.The plutonic activity in the Kashan region occurred during the transition from Eocene subduction-related setting to Middle Miocene collisional setting.展开更多
The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-co...The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9±0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende40Ar/39Ar ages of 116.1±1.1 Ma and 106.6±0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500°C. The hornblende40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15–25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.展开更多
The Baibokoum syenitic pluton(BSP),located in southern Chad,to the NE of the Adamawa-Yadédomain,is one of the few strongly potassic magmatic bodies in the southern part of the Central African Fold Belt(CAFB)in Ch...The Baibokoum syenitic pluton(BSP),located in southern Chad,to the NE of the Adamawa-Yadédomain,is one of the few strongly potassic magmatic bodies in the southern part of the Central African Fold Belt(CAFB)in Chad.It has been previously studied petrologically,but its petrogenesis has remained poorly known.Petrographic and whole-rock geochemical data presented in this article highlight their magma genesis and geodynamic evolution.The BSP consists of medium-to coarse-grained syenites associated with minor microdiorites,which occur as syn-plutonic dikes and mafic microgranular enclaves(MME)coarse-and medium-grained syenites outcrop respectively to the core and the border of the BSP.The syenite displays high-K and alkaline to trans-alkaline affinity.Petrographic and geochemical data suggest that medium-to coarse-grained syenites are from single magma source that evolved and differentiated by fractional crystallization in a magma reservoir.REE profiles show enriched LREEs(La_(N)/Yb_(N)=6.19-45.55)while HREEs show an almost flat profile(Dy_(N)/Yb_(N)=1.0-2.23),and the La/Sm and Sm/Yb ratios have led to propose that the aforementioned rocks derived from the partial melting of a garnet-spinel-lherzolite mantle source.Negative Nb and Ta anomalies indicate that this mantle source was modified by the addition of subduction-related material.Th/Yb ratios associated with high Ba/La ratios indicate that enrichment of the source could be related to slab-derived fluids.The parental magma of the BSP was generated by partial melting of the metasomatized lithospheric mantle that was modified into arc-magmatism material in a subduction setting.Its emplacement took place in two successive stages:a static stage of fractional crystallization and crystal settling in a deep magma source and a dynamic stage in a shear deformation setting during which stratified magma rises towards the upper crust,with evolved syenite magma being emplaced first and diorite later.The emplacement of the BSP was probably controlled by the evolution of the Tcholliré-Banyo Fault and M'BéréShear Zone during the Pan-African orogeny.展开更多
The Suzhou granitic pluton is the first identified Nb-Ta-rich granite in China.To reveal the genetic link between the sequence of magmatic and hydrothermal evolution and Nb-Ta mineralization in different intrusive pha...The Suzhou granitic pluton is the first identified Nb-Ta-rich granite in China.To reveal the genetic link between the sequence of magmatic and hydrothermal evolution and Nb-Ta mineralization in different intrusive phases of the Suzhou granite,whole-rock geochemistry,geochemistry and U-Th-Pb dating of monazite was analyzed.The unique geochemical characteristics show that the Suzhou pluton can be discriminated as an A-type granite.LA-ICP-MS U-Th-Pb dating of monazite in both the medium-and coarse-grained biotite granite(MBG)and the fine-grained biotite granite(FBG)indicates that the granite formed between 124 and 127 Ma.Based on geochemical characteristics and mineral textures,the MBG(Mnz-Ia)and FBG(Mnz-Ib)monazites are classified as magmatic monazites;another monazite(Mnz-II)from the MBG formed during a magmatic-hydrothermal transitional stage.Nb-Ta in the Suzhou pluton gradually concentrated during fractional crystallization and alteration of Ti-rich minerals and biotite.Ultimately,with the involvement of F-Li-rich fluid,Nb-Ta mineralization occurred during the magmatic-hydrothermal transition.The Suzhou pluton is considered part of a 600-km-and NE-SW-trending Nb-rich A-type granite belt together with other Early Cretaceous A-type granites in the Jiangnan Orogen that offers prospects of a new target for Nb-Ta prospecting.展开更多
Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution.Here,we present zircon U-Pb ages and Hf isotope,whole-rock major and trace element compositions and Nd-P...Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution.Here,we present zircon U-Pb ages and Hf isotope,whole-rock major and trace element compositions and Nd-Pb isotopes of the Wangxiang composite pluton,South China.New ages obtained show that these rocks were generated in Late Jurassic(ca.156–158 Ma).The rocks are divided into low silica(SiO_(2)<67 wt.%,biotite granodiorites and their dioritic enclaves)and high silica ones(SiO_(2)>71 wt.%,two-mica granites,garnet-bearing muscovite granites and muscovite granites).The high silica rocks are enriched in light rare earth elements(LREEs)relative to heavy REEs(HREEs)((La/Yb)_(N)=15.6–41.9,while the low silica rocks are not(0.7–76.6).All rocks show various negative Ti,Sr,Eu and strong positive Pb anomalies.The low silica rocks have less negative values ofε_(Nd)(t)(-8.79 to-6.99),similar values of~((206)Pb/^(204)Pb)_(i)(18.155–18.346)andε_(Hf)(t)(-9.51 to-3.47,except one-12.84),compared to the high silica rocks(ε_(Nd)(t)=-11.14 to-10.26;^((206)Pb/^(204)Pb)_(i)=17.935–19.093;ε_(Hf)(t)=-12.03 to-7.15,except one-2.41).Data suggest that the parental magma of the studied rocks(represented by enclaves)was produced by partial melting of a garnet-free crustal source.Subsequently those crustal magmas formed the more evolved units through assimilation and fractional crystallization processes,and fluid enrichment during the final magmatic activity.Combining our results with previous multidisciplinary studies,we propose that the key factor to control the evolution of Wangxiang composite pluton is discrete emplacement of crustal magmas by dyking.展开更多
The western margin of the Yangtze Block hosts diverse Neoproterozoic igneous rocks,with exposed S-type granites serving as key indicators for deciphering regional geological evolution.This study focuses on the Jiudaow...The western margin of the Yangtze Block hosts diverse Neoproterozoic igneous rocks,with exposed S-type granites serving as key indicators for deciphering regional geological evolution.This study focuses on the Jiudaowan granite pluton,located on the western margin of the Yangtze Block,through systematic petrographic,whole-rock geochemical,zircon and monazite U-Pb geochronology,and whole-rock Nd isotopic analyses aiming to elucidate its petrogenesis and tectonic significance.The Jiudaowan granite pluton is a composite body,consisting of the Luotaijiu,Jiudaowan,and Daheishan units,characterized by biotite monzogranites,muscovite-plagioclase granites,and two-mica monzogranites,respectively.LA-ICP-MS zircon and monazite U-Pb dating reveals crystallization ages between 832 and 798 Ma.The three units are peraluminous,containing minerals such as muscovite,garnet,and tourma-line,and exhibiting high SiO_(2)(72.99-77.83 wt%),Al_(2)O_(3)(12.36-15.02 wt%),and A/CNK values(1.06-1.43),con-firming their classification as peraluminous S-type granites.Compositional variations within the Jiudaowan granite pluton are primarily controlled by protolith composition and melting mechanisms.The pluton is distinguished by low CaO/Na_(2)O ratios(0.02-0.18),high Rb/Sr(0.83-113)and Rb/Ba(0.33-15.2)ratios,and negativeεNd(t)values(−13.6 to−9.1),indicating derivation from partial melting of het-erogeneous metasedimentary sources.MgO,TiO_(2),Rb/Sr,and whole-rock Zr saturation temperatures suggest that the Luotaijiu and Daheishan units formed via biotite dehydration melting,whereas the Jiudaowan unit resulted from muscovite dehydration melting.Additionally,the Jiudaowan granite pluton displays a clear negative correlation between Al_(2)O_(3),CaO,Fe_(2)O_(3)T,MgO,TiO_(2),and SiO_(2),along with pronounced Eu negative anomalies and depletions in Sr and Ti,suggesting fractional crystallization of feldspar,mica,and Fe-Ti oxides during magma emplacement.Similarly,variable incompatible element ratios of Nb/U(1.07-18.97)and Nb/La(0.24-26.88)further indicate minor crustal assimilation and contamination during magma evolution.Integrating regional geological data,we propose that the Jiudaowan pluton formed during crustal thickening associated with post-collisional extension,likely related to the breakup of the Rodinia supercontinent.展开更多
Geochronological and isotope studies have been carried out for two important plutons in the Central Western Kunlun Belt. U-Pb single grain zircon dating results show that the North Kudi Pluton (404 Ma) was produced ne...Geochronological and isotope studies have been carried out for two important plutons in the Central Western Kunlun Belt. U-Pb single grain zircon dating results show that the North Kudi Pluton (404 Ma) was produced near the end of Caledonian; whereas the previously labeled Hercynian Arkarz Mountain Pluton (215 Ma) is either an Indosinian pluton or a product展开更多
The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavo...The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.展开更多
Early Paleozoic magmatism in the West Kunlun Orogenic Belt(WKOB)preserves important information about the tectonic evolution of the Proto-Tethys Ocean.This paper reports whole-rock compositions,zircon and apatite U-Pb...Early Paleozoic magmatism in the West Kunlun Orogenic Belt(WKOB)preserves important information about the tectonic evolution of the Proto-Tethys Ocean.This paper reports whole-rock compositions,zircon and apatite U-Pb dating,and zircon Hf isotopes for the Qiaerlong Pluton(QEL)at the northwestern margin of WKOB,with the aim of elucidating the petrogenesis of the pluton and shedding insights into the subduction-collision process of this oceanic slab.The QEL is mainly composed of Ordovician quartz monzodiorite(479±3 Ma),quartz monzonite(467–472 Ma),and syenogranite(463±4 Ma),and is intruded by Middle Silurian peraluminous granite(429±20 Ma)and diabase(421±4 Ma).Zirconε_(Hf)(t)values reveal that quartz monzodiorites(+2.1 to+9.9)and quartz monzonites(+0.6 to+6.8)were derived from a mixed source of juvenile crust and older lower crust,and syenogranites(−5.6 to+4.5)and peraluminous granites(−2.9 to+2.0)were generated from a mixed source of lower crust and upper crust;diabases had zirconε_(Hf)(t)values ranging from−0.3 to+4.1,and contained 463±5 Ma captured zircon and 1048±39 Ma inherited zircon,indicating they originated from enriched lithospheric mantle and were contaminated by crustal materials.The Ordovician granitoids are enriched in LILEs and light rare-earth elements,and depleted in HFSEs with negative Nb,Ta,P,and Ti anomalies,suggesting that they formed in a subduction environment.Middle Silurian peraluminous granites have the characteristics of leucogranites with high SiO_(2)contents(74.92 wt.%–75.88 wt.%)and distinctly negative Eu anomalies(δEu=0.03–0.14),indicating that they belong to highly fractionated granite and were formed in a post-collision extension setting.Comparative analysis of these results with other Early Paleozoic magmas reveals that the Proto-Tethys ocean closed before the Middle Silurian and its southward subduction resulted in the formation of QEL.展开更多
Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited s...Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited samples, which includes that of 70 elements, is analyzed according to geological age - Archeozoic (Ar), Proterozoic (Pt), Eopaleozoic (PZl), Neopaleozoic (Pz2), Mesozoic (Mz), and Cenozoic (Cz) - and three major compositional varieties, e.g. alkali-feldspar granite, syenogranite and adamellite. Petrochemical parameters, trace-element content and rare-earth element (REE) distribu- tions of the different rock types and geological ages are characterized, and change tendencies through Archean to Cenozoic time are recorded. The comprehensive analytical data presented here has not been previously published. This significant data set can be used as fundamental information in studies of basic China geology, magma petrogenesis, ore exploration and geochemistry.展开更多
The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq...The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.展开更多
The shallow Biella and Traversella late-orogenic plutons are intruded in the Sesia Lanzo Zone(SLZ) the innermost structural element of the Western Alpine arc,a continental unit that records a pervasive metamorphic imp...The shallow Biella and Traversella late-orogenic plutons are intruded in the Sesia Lanzo Zone(SLZ) the innermost structural element of the Western Alpine arc,a continental unit that records a pervasive metamorphic imprint related to the Alpine subduction. The country rocks consist of metapelites with minor metagranitoids,meta-aplites,metabasites and marbles. The pre-intrusive pervasive metamorphic imprint developed under eclogite facies conditions. The ductile syn-metamorphic deformation展开更多
The South China Sea(SCS)is presented here as a case example to demonstrate the evolution of basins developed at convergent boundaries.The structural map published in 2017 by CGMW at the 1:3 million scale allows to vis...The South China Sea(SCS)is presented here as a case example to demonstrate the evolution of basins developed at convergent boundaries.The structural map published in 2017 by CGMW at the 1:3 million scale allows to visualize the location of the rifting faults from a normal to hyper-extended crust,the shape and structure of the oceanic crust and their late involvement in a convergent margin.It highlights the reactivation of the Mesozoic tectono-stratigraphic setting such as broad folds and granitic plutons during the rifting,and the effect of the resulting architecture on the NW Borneo accretionary wedge.展开更多
The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating. This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya plu...The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating. This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya pluton, and discusses the genesis and tectonic environment. The ages of gabbro, quartz syenite, diorite porphyrite and fine-grained granite are 236±6 Ma, 246±6 Ma, 233±8 Ma and 237±8 Ma, respectively. All these phases were formed in early-middle Indosinian (Triassic) in a post-orogenic environment. In addition to underplating, intraplating of mantle-derived magmas is also a substantial mechanism for magma generation and vertical accretion of the continental crust. Granitoid rocks are important products of vertical continental accretion as underplating evolves gradually to intraplating. The existence of post-orogenic Indosinian granites shows that the middle Tianshan orogenic belt underwent an important tectonic conversion from the Paleo-Asian ocean subduction-collision system to the Paleo-Tethys ocean regime.展开更多
Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampl...Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U-Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±l Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions.Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge-scale magma mixing in the Gangdise belt took place 15-20 million years after the initiation of the India-Asia continental collision, genetically related to the underplating of subduction-collision-induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass-energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.展开更多
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact rel...The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.展开更多
基金funded with FONDECYT Project No. 11140722 of CONICYTthe fund support of DIUDA 2013-22268 and DIUDA 201422273 projects
文摘Compositionally zoned plutons, both layered and concentrically arranged, provide granitic exposures where the mechanisms and timing of the magmatic emplacement processes can be studied. The importance of in-situ geochemical differentiation and the magma replenishment rates are revealed by geochemistry and field relations, together with the increasingly accurate U-Pb geochronology, which has promoted the knowledge about the pluton incremental assembly theories.The Flamenco pluton, located in the Coastal Range of northern Chile, is part of the Upper Triassic to Early Cretaceous Andean intrusives formed in the western active margin of South America, and present a normal zoned structure with mafic magmatic facies(mostly gabbros and Qtz-diorites) close to the contacts with the host metasediments, and tonalites, granodiorites and granites in the inner areas. A combined study of the field relations, geochemistry and zircon geochronology of the magmatic facies was applied to determine the emplacement sequence of the Flamenco pluton, revealing three distinguishable domains separated by metasedimentary septa. The SW area is constituted by mostly homogeneous leucocratic granodiorites that yielded an age of 213 Ma as the best estimation for their emplacement age. Distinctive geochemical characteristics, such as the absence of an Eu anomaly, the depletion in HREE, or the highest Sr, Sr/Y and Ce/Yb values among the granodioritic facies of the pluton,involve lower T and/or higher P conditions at the magmatic source according to experimental studies.These conditions were established during an early stage of the Andean magmatic arc building that is firstly defined here as Upper Triassic. The NW and E domains of the pluton were sequentially emplaced between 194 Ma and 186 Ma and both the field relations and the detailed geochronological results suggest that the mafic facies intruded latter in the emplacement sequence. To the NW, Qtz-dioritic and gabbroic externally emplaced pulses gave a younger crystallization age of 186.3 ± 1.8 Ma, and promoted the granoblastic textures and metamorphic zircon overgrowths that characterize the granodiorites located in the contact with the intermediate and felsic inner magmas, which yielded a best estimation of their emplacement age of 192 士 1.5 Ma. On the other hand, in the eastern domain, magma-magma relations are observed between gabbros and previously intruded tonalites and granodiorites. Both the mafic and intermediate facies show two main subgroups of ages that yielded 194.7 土 1.5 Ma to188.3 ± 2.1 Ma and 193.1 ± 2.2 Ma to 185.5 ± 1.4 Ma respectively. These differences are related to the variations in the magmatic addition rates, which may extend the super-solidus conditions in the eastern domain of the magmatic reservoir as is confirmed by the wider age ranges yielded by these magmatic facies. Zircon overgrowths in the host rocks yield similar ages(around 220 Ma and 205 Ma) than the oldest results obtained in the intrusive facies, indicating that metamorphism correlates with the initial stages of plutonic emplacement.Geochronological results differ between 9 Myr and 41 Myr in the eight studied samples for noninherited ages and gave very close mean ages(within analytical uncertainty) for all the intrusive units. However, we examine other characteristics such as zircon morphology, internal structure,geochemistry and statistical data to assess if the scattering of the geochronological data may be related to the different processes involved in the construction of the Flamenco pluton. We concluded that this detailed study of U-Pb zircon ages, including individual and significative groups of analyses, is useful to determine accurately the emplacement sequence and the genetic relation between the intrusive units,together with the evidences depicted by the geochemistry and field relations.
基金This study was financially supported by the National Natural Science Foundation of China(grants 40421303 and 40234046).
文摘The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xiema and Xiangzikou plutons in Hunan Province, and 205.3±1.6 Ma for biotite granite from the Napeng pluton, western Guandong Province, respectively, showing a similar late Indosinian age of crystallization. In combination with other geochronological data from Indosinian granites within the South China Block (SCB), it is proposed that those late Indosinian granites with an age of -210 Ma and the early Indosinian granites (230-245 Ma) have the similar petrogenesis in identical tectonic setting. The Indosinian granites within the SCB might be the products of anatexis of the thickening crust in a compressive regime. These data provide a further understanding for the temporal and spatial distribution of the Indosinian granites and the dynamic evolution of the SCB.
基金the National Natural Science Foundation of China(grant 49872072) the Postdoctoral Foundation of China.
文摘It is generally considered that granitic plutons are forcefully emplaced in acompressional setting and permissively emplaced in an extensional setting. This paper, however,shows that syn-kinematic (extensional) elliptic granitic plutons in the Yagan-Onch Hayrhanmetamorphic core complex (MCC) have relatively strong forceful emplacement, which are indicated by(1) concentric distribution of the rock units, (2) a strain pattern with strong strains on themargins and low strains at the centre of a pluton, and particularly (3) syn-emplacement shorteningof the host rocks within the aureole. The strain analysis for the host rocks shows that thehost-rock ductile shortening, i.e. forceful emplacement, provides about 16-24 percent of theemplacement space for the present plutons. All these suggest that forceful emplacement occurs notonly in a compressional tectonic setting, but also in an extensional setting. This study furtherdemonstrates the significance of the multiple emplacement of granitic plutons and provides newinformation about the causality between granitic magmatism and the formation of the MCC and itsdynamics.
基金funded by Department of Science and Technology(DST),Govt.of India funded project ESS/16/297/2007.
文摘We present results of field studies for magmatic processes of 2.57-2.52 Ga calc-alkaline plutonic bodies from three corridors in the eastern Dharwar craton(EDC)corresponding to different crustal levels.At deeper levels plutons are bounded by thick zone of migmatites with numerous melt filled shear bands which often overprinted by incipient charnockite.On the other hand in the mid-to-upper crustal levels plutons show relatively sharp contacts and truncates the adjoining basement.The plutons are composite which comprises voluminous intrusive monzodiorite,quartz-monzonite and porphyritic monzogranite in the central part and minor anatectic granites or diatexite at periphery.Numerous xenoliths,Mafic Magmatic Enclaves(MME),disrupted trains of synplutonic mafic dykes are found in both intrusive and anatectic facies.The plutons show magmatic as well as solid-state plastic fabrics defined by magmatic flow banding and C-S fabrics respectively.Crustal scale shear zone network comprising early melt filled NE trending hot ductile dextral shear bands and slightly later colder NW trending sinistral shear bands defined by rotation of mafic boudins,phenocrysts and C-S fabrics.The internal architecture of plutons is attributed to the crustal scale magma chamber processes where voluminous intrusive magmas emplaced into the crust caused reworking of surrounding basement resulting in production of anatectic magmas.Crystallization of voluminous intrusive magmas in the deep crust probably caused development of fractures to mantle depth causing decompression melting of mantle and resultant mafic magmas penetrated the crystallizing host in magma chambers.Field evidences together with published ages and Nd isotope data reveal a spatial link between late Archaean magmatic accretion,reworking and cratonization.
基金The TMU Research Grant Council funded field studiespartly supported by grants from the University of Science and Technology of China,HefeiPeking University,Beijing
文摘The Kashan plutons are situated in the central part of Urumieh-Dokhtar magmatic arc recording subduction-related magmatism within the Alpine-Himalayan orogeny in Iran.These rocks consist of different calc-alkaline plutonic rocks including gabbro,gabbroic diorite,microdiorite,monzodiorite,tonalite,granodiorite,and granite.The plutons were emplaced into the Jurassic sedimentary units(Shemshak Formation)and the Eocene calc-alkaline volcanic and pyroclastic rocks.New U-Pb zircon ages show that the Kashan plutons formed during two main periods at 35.20±0.71 Ma in the Late Eocene(Priabonian)and at 18.90±0.84,19.26±0.83,19.30±1.2,and 17.3±1.8 Ma in the Early Miocene(Burdigalian).The reported events in the Kashan plutons imply the final phases of subductionrelated magmatism before the collision which happened between the Arabian and Iranian plates in the Middle Miocene.The plutonic activity in the Kashan region occurred during the transition from Eocene subduction-related setting to Middle Miocene collisional setting.
基金This work was financially supported by the National Natural Science Foundation ol China (Grant Nos. 49472134. 49333030) the Special President Grant of the Chinese Academy of Sciences. The authors thank Zhou Hui-fang at the Tianjin Institute of Geolog
文摘The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9±0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende40Ar/39Ar ages of 116.1±1.1 Ma and 106.6±0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500°C. The hornblende40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15–25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.
文摘The Baibokoum syenitic pluton(BSP),located in southern Chad,to the NE of the Adamawa-Yadédomain,is one of the few strongly potassic magmatic bodies in the southern part of the Central African Fold Belt(CAFB)in Chad.It has been previously studied petrologically,but its petrogenesis has remained poorly known.Petrographic and whole-rock geochemical data presented in this article highlight their magma genesis and geodynamic evolution.The BSP consists of medium-to coarse-grained syenites associated with minor microdiorites,which occur as syn-plutonic dikes and mafic microgranular enclaves(MME)coarse-and medium-grained syenites outcrop respectively to the core and the border of the BSP.The syenite displays high-K and alkaline to trans-alkaline affinity.Petrographic and geochemical data suggest that medium-to coarse-grained syenites are from single magma source that evolved and differentiated by fractional crystallization in a magma reservoir.REE profiles show enriched LREEs(La_(N)/Yb_(N)=6.19-45.55)while HREEs show an almost flat profile(Dy_(N)/Yb_(N)=1.0-2.23),and the La/Sm and Sm/Yb ratios have led to propose that the aforementioned rocks derived from the partial melting of a garnet-spinel-lherzolite mantle source.Negative Nb and Ta anomalies indicate that this mantle source was modified by the addition of subduction-related material.Th/Yb ratios associated with high Ba/La ratios indicate that enrichment of the source could be related to slab-derived fluids.The parental magma of the BSP was generated by partial melting of the metasomatized lithospheric mantle that was modified into arc-magmatism material in a subduction setting.Its emplacement took place in two successive stages:a static stage of fractional crystallization and crystal settling in a deep magma source and a dynamic stage in a shear deformation setting during which stratified magma rises towards the upper crust,with evolved syenite magma being emplaced first and diorite later.The emplacement of the BSP was probably controlled by the evolution of the Tcholliré-Banyo Fault and M'BéréShear Zone during the Pan-African orogeny.
基金supported by the National Natural Science Foundation of China(Grant Nos.41903025 and 41803048)the National Nonprofit Institute Research Grant of IGGE(Grant Nos.AS2024J03,JY202106 and AS2022P03)+2 种基金the Hebei Key Science and Technology Program(Grant No.19057411Z)the National Science and Technology Major Project(Grant No.2024ZD1002402)the China Geological Survey Project(Grant No.DD20221807).
文摘The Suzhou granitic pluton is the first identified Nb-Ta-rich granite in China.To reveal the genetic link between the sequence of magmatic and hydrothermal evolution and Nb-Ta mineralization in different intrusive phases of the Suzhou granite,whole-rock geochemistry,geochemistry and U-Th-Pb dating of monazite was analyzed.The unique geochemical characteristics show that the Suzhou pluton can be discriminated as an A-type granite.LA-ICP-MS U-Th-Pb dating of monazite in both the medium-and coarse-grained biotite granite(MBG)and the fine-grained biotite granite(FBG)indicates that the granite formed between 124 and 127 Ma.Based on geochemical characteristics and mineral textures,the MBG(Mnz-Ia)and FBG(Mnz-Ib)monazites are classified as magmatic monazites;another monazite(Mnz-II)from the MBG formed during a magmatic-hydrothermal transitional stage.Nb-Ta in the Suzhou pluton gradually concentrated during fractional crystallization and alteration of Ti-rich minerals and biotite.Ultimately,with the involvement of F-Li-rich fluid,Nb-Ta mineralization occurred during the magmatic-hydrothermal transition.The Suzhou pluton is considered part of a 600-km-and NE-SW-trending Nb-rich A-type granite belt together with other Early Cretaceous A-type granites in the Jiangnan Orogen that offers prospects of a new target for Nb-Ta prospecting.
基金provided by the National Natural Science Foundation of China(No.41002022)the National Key R&D Program of China(No.2017YFC0602402)+3 种基金the Provincial Natural Science Foundation of Hunan(No.2019JJ50831)the Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University(No.20LCD08)the Funded by Open Research Fund Programme of the Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education(No.2018YSJS07)Bruna B.Carvalho is thankful to MIUR(Ministero dell’Istruzione,dell’Universitàe della Ricerca)for the award of a grant(No.PNRA18_00103)。
文摘Composite granitic pluton with distinct units is a potential target for identifying its detailed magma evolution.Here,we present zircon U-Pb ages and Hf isotope,whole-rock major and trace element compositions and Nd-Pb isotopes of the Wangxiang composite pluton,South China.New ages obtained show that these rocks were generated in Late Jurassic(ca.156–158 Ma).The rocks are divided into low silica(SiO_(2)<67 wt.%,biotite granodiorites and their dioritic enclaves)and high silica ones(SiO_(2)>71 wt.%,two-mica granites,garnet-bearing muscovite granites and muscovite granites).The high silica rocks are enriched in light rare earth elements(LREEs)relative to heavy REEs(HREEs)((La/Yb)_(N)=15.6–41.9,while the low silica rocks are not(0.7–76.6).All rocks show various negative Ti,Sr,Eu and strong positive Pb anomalies.The low silica rocks have less negative values ofε_(Nd)(t)(-8.79 to-6.99),similar values of~((206)Pb/^(204)Pb)_(i)(18.155–18.346)andε_(Hf)(t)(-9.51 to-3.47,except one-12.84),compared to the high silica rocks(ε_(Nd)(t)=-11.14 to-10.26;^((206)Pb/^(204)Pb)_(i)=17.935–19.093;ε_(Hf)(t)=-12.03 to-7.15,except one-2.41).Data suggest that the parental magma of the studied rocks(represented by enclaves)was produced by partial melting of a garnet-free crustal source.Subsequently those crustal magmas formed the more evolved units through assimilation and fractional crystallization processes,and fluid enrichment during the final magmatic activity.Combining our results with previous multidisciplinary studies,we propose that the key factor to control the evolution of Wangxiang composite pluton is discrete emplacement of crustal magmas by dyking.
基金supported by the Deep Earth Probe and Mineral Resources Exploration-National Science and Technology Major Project(Grant No.2024ZD1001600)National Natural Science Foundation of China(Grants Nos.42302223,42162012 and 42402069)Yunnan Fundamental Research Projects(Grants No.202401CF070093).
文摘The western margin of the Yangtze Block hosts diverse Neoproterozoic igneous rocks,with exposed S-type granites serving as key indicators for deciphering regional geological evolution.This study focuses on the Jiudaowan granite pluton,located on the western margin of the Yangtze Block,through systematic petrographic,whole-rock geochemical,zircon and monazite U-Pb geochronology,and whole-rock Nd isotopic analyses aiming to elucidate its petrogenesis and tectonic significance.The Jiudaowan granite pluton is a composite body,consisting of the Luotaijiu,Jiudaowan,and Daheishan units,characterized by biotite monzogranites,muscovite-plagioclase granites,and two-mica monzogranites,respectively.LA-ICP-MS zircon and monazite U-Pb dating reveals crystallization ages between 832 and 798 Ma.The three units are peraluminous,containing minerals such as muscovite,garnet,and tourma-line,and exhibiting high SiO_(2)(72.99-77.83 wt%),Al_(2)O_(3)(12.36-15.02 wt%),and A/CNK values(1.06-1.43),con-firming their classification as peraluminous S-type granites.Compositional variations within the Jiudaowan granite pluton are primarily controlled by protolith composition and melting mechanisms.The pluton is distinguished by low CaO/Na_(2)O ratios(0.02-0.18),high Rb/Sr(0.83-113)and Rb/Ba(0.33-15.2)ratios,and negativeεNd(t)values(−13.6 to−9.1),indicating derivation from partial melting of het-erogeneous metasedimentary sources.MgO,TiO_(2),Rb/Sr,and whole-rock Zr saturation temperatures suggest that the Luotaijiu and Daheishan units formed via biotite dehydration melting,whereas the Jiudaowan unit resulted from muscovite dehydration melting.Additionally,the Jiudaowan granite pluton displays a clear negative correlation between Al_(2)O_(3),CaO,Fe_(2)O_(3)T,MgO,TiO_(2),and SiO_(2),along with pronounced Eu negative anomalies and depletions in Sr and Ti,suggesting fractional crystallization of feldspar,mica,and Fe-Ti oxides during magma emplacement.Similarly,variable incompatible element ratios of Nb/U(1.07-18.97)and Nb/La(0.24-26.88)further indicate minor crustal assimilation and contamination during magma evolution.Integrating regional geological data,we propose that the Jiudaowan pluton formed during crustal thickening associated with post-collisional extension,likely related to the breakup of the Rodinia supercontinent.
文摘Geochronological and isotope studies have been carried out for two important plutons in the Central Western Kunlun Belt. U-Pb single grain zircon dating results show that the North Kudi Pluton (404 Ma) was produced near the end of Caledonian; whereas the previously labeled Hercynian Arkarz Mountain Pluton (215 Ma) is either an Indosinian pluton or a product
文摘The Banfora’s birimian greenstones belt is located in the western part of Burkina Faso (west Africa). Recent petrographic and lithogeochemical studies have highlighted plutons intruding the metasedimentary and metavolcanic series. These plutonic rocks are composed of leucogranites belonging to the so-called Ferkessedougou’s or Ferké’s batholith, granites, granodiorites, monzodiorites and quartz monzonites. From the lithogeochemical studies, these plutonic rocks have a calc-alkaline and peraluminous character. The rare earth elements spectra of the Ferké’s leucogranites let distinguished two sub-facies. One of the sub-facies is composed of quartz monzonite to granite, while the other is granitic sensu stricto. However, all these plutonic rocks were emplaced in a geodynamic context of subduction followed by collision.
基金financially supported by the Natural Science Foundation of China(NSFC Nos.U1603245,41703051,U1812402)the Chinese Academy of Sciences“Light of West China”Programthe Natural Science Foundation of Guizhou Province(No.[2018]1171).
文摘Early Paleozoic magmatism in the West Kunlun Orogenic Belt(WKOB)preserves important information about the tectonic evolution of the Proto-Tethys Ocean.This paper reports whole-rock compositions,zircon and apatite U-Pb dating,and zircon Hf isotopes for the Qiaerlong Pluton(QEL)at the northwestern margin of WKOB,with the aim of elucidating the petrogenesis of the pluton and shedding insights into the subduction-collision process of this oceanic slab.The QEL is mainly composed of Ordovician quartz monzodiorite(479±3 Ma),quartz monzonite(467–472 Ma),and syenogranite(463±4 Ma),and is intruded by Middle Silurian peraluminous granite(429±20 Ma)and diabase(421±4 Ma).Zirconε_(Hf)(t)values reveal that quartz monzodiorites(+2.1 to+9.9)and quartz monzonites(+0.6 to+6.8)were derived from a mixed source of juvenile crust and older lower crust,and syenogranites(−5.6 to+4.5)and peraluminous granites(−2.9 to+2.0)were generated from a mixed source of lower crust and upper crust;diabases had zirconε_(Hf)(t)values ranging from−0.3 to+4.1,and contained 463±5 Ma captured zircon and 1048±39 Ma inherited zircon,indicating they originated from enriched lithospheric mantle and were contaminated by crustal materials.The Ordovician granitoids are enriched in LILEs and light rare-earth elements,and depleted in HFSEs with negative Nb,Ta,P,and Ti anomalies,suggesting that they formed in a subduction environment.Middle Silurian peraluminous granites have the characteristics of leucogranites with high SiO_(2)contents(74.92 wt.%–75.88 wt.%)and distinctly negative Eu anomalies(δEu=0.03–0.14),indicating that they belong to highly fractionated granite and were formed in a post-collision extension setting.Comparative analysis of these results with other Early Paleozoic magmas reveals that the Proto-Tethys ocean closed before the Middle Silurian and its southward subduction resulted in the formation of QEL.
基金sponsored by a project of the Special Society Commonwealth research funds of the Ministry of Science and Technology,P.R.China(No.2001DIB10076)
文摘Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited samples, which includes that of 70 elements, is analyzed according to geological age - Archeozoic (Ar), Proterozoic (Pt), Eopaleozoic (PZl), Neopaleozoic (Pz2), Mesozoic (Mz), and Cenozoic (Cz) - and three major compositional varieties, e.g. alkali-feldspar granite, syenogranite and adamellite. Petrochemical parameters, trace-element content and rare-earth element (REE) distribu- tions of the different rock types and geological ages are characterized, and change tendencies through Archean to Cenozoic time are recorded. The comprehensive analytical data presented here has not been previously published. This significant data set can be used as fundamental information in studies of basic China geology, magma petrogenesis, ore exploration and geochemistry.
基金jointly supported by the National Natural Science Foundation of China (41802093)the National Key Research and Development Program of China (2017YFC0601201 and 2018YFC0604002)+2 种基金the Project of Xinjiang Bureau of Geology and Mineral Resources (2011BAB06B03-3)the Project of China Geological Survey (DD20190405 and DD20190406)the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (2021qntd23).
文摘The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.
文摘The shallow Biella and Traversella late-orogenic plutons are intruded in the Sesia Lanzo Zone(SLZ) the innermost structural element of the Western Alpine arc,a continental unit that records a pervasive metamorphic imprint related to the Alpine subduction. The country rocks consist of metapelites with minor metagranitoids,meta-aplites,metabasites and marbles. The pre-intrusive pervasive metamorphic imprint developed under eclogite facies conditions. The ductile syn-metamorphic deformation
文摘The South China Sea(SCS)is presented here as a case example to demonstrate the evolution of basins developed at convergent boundaries.The structural map published in 2017 by CGMW at the 1:3 million scale allows to visualize the location of the rifting faults from a normal to hyper-extended crust,the shape and structure of the oceanic crust and their late involvement in a convergent margin.It highlights the reactivation of the Mesozoic tectono-stratigraphic setting such as broad folds and granitic plutons during the rifting,and the effect of the resulting architecture on the NW Borneo accretionary wedge.
文摘The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating. This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya pluton, and discusses the genesis and tectonic environment. The ages of gabbro, quartz syenite, diorite porphyrite and fine-grained granite are 236±6 Ma, 246±6 Ma, 233±8 Ma and 237±8 Ma, respectively. All these phases were formed in early-middle Indosinian (Triassic) in a post-orogenic environment. In addition to underplating, intraplating of mantle-derived magmas is also a substantial mechanism for magma generation and vertical accretion of the continental crust. Granitoid rocks are important products of vertical continental accretion as underplating evolves gradually to intraplating. The existence of post-orogenic Indosinian granites shows that the middle Tianshan orogenic belt underwent an important tectonic conversion from the Paleo-Asian ocean subduction-collision system to the Paleo-Tethys ocean regime.
基金the grants of the National Key Project for Basic Research of China(No.2002CB412600)the National Natural Science Foundation of China(Nos.40172025,40103003,49802005,49772107,40473020)the key project on the Tibetan Plateau of the Ministryof Land and Resources of China(No.20010102401).
文摘Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdise giant magmatic belt, within which the Qüxü batholith is the most typical MME-bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Qüxü batholith, and subsequent zircon SHRIMP II U-Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock, mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±l Ma and 49.3±1.7 Ma, 48.9±1.1 Ma, 49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions.Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge-scale magma mixing in the Gangdise belt took place 15-20 million years after the initiation of the India-Asia continental collision, genetically related to the underplating of subduction-collision-induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass-energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.
文摘The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt.