Physical model tests with highly reflective structures often encounter a problem of multiple reflections between the structures and the wavemaker. This paper presents a piston-type active absorbing wavemaker system wh...Physical model tests with highly reflective structures often encounter a problem of multiple reflections between the structures and the wavemaker. This paper presents a piston-type active absorbing wavemaker system which can absorb most of the reflections. Based on the first-order wavemaker theory, a frequency domain absorption transfer function is modeled. Its time realization can be achieved by designing an IIR digital filter, which is used to control the absorbing wavemaker system. In a real system, time delays often exist in the wave making process. Thus a delay compensation term to the transfer function is proposed. Experimental results show that the system performs well for both regular and irregular waves with periods from 0.6 s to 2.0 s, and the absorption capability is larger than 96.5% at target wave fields.展开更多
The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided se...The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.展开更多
The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge and the wall of the tank.In this study,we analyze the influence of this gap on the wave mak...The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge and the wall of the tank.In this study,we analyze the influence of this gap on the wave making performance of the plunger using two-dimensional(2 D)CFD calculations for a range of nearly linear wave conditions and compare the results with both experimental measurements and linear potential flow theory.Three wedge-shaped profiles,all with the same submerged volume,are considered.Moreover,the generated waves are compared with the predictions of linear potential flow theory.The calculations are made using the commercial ANSYS FLUENT finite-volume code with dynamic meshes to solve the Navier-Stokes equations and the volume of fluid scheme to capture the air-water interface.Furthermore,the linear potential flow solution of Wu(J Hydraul Res 26:481-493,1988)is extended to consider an arbitrary profile and serve as a reference solution.The amplitude ratios of the generated waves predicted by the CFD calculations compare well with the predictions of linear potential flow theory for a simple wedge,indicating that viscous effects do not influence this ratio for small-amplitude motions in 2 D.By contrast,significant higher harmonic components are produced by larger amplitude motions.Also,the simple wedge is found to produce the smallest spurious higher harmonic content in the far-field wave.展开更多
Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in resonance. A prominent approach to avoid multiple refl...Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in resonance. A prominent approach to avoid multiple reflections is active control of the wavemaker. This paper proposes a simple and practical active control algorithm for piston-type wavemaker. The block diagram of the control system is presented in real time domain. It is shown that there is no need to use any transfer function or filter in the feedback and feed forward loops and the use of constant gains can yield acceptable results. In the operating frequency range(0.25-2 Hz), it is revealed that the proposed system is very effective at suppressing the excitation of resonant sloshing for regular wave. In the case of irregular waves, it is depicted that the experimental waves agree quite well with the desired wave elevation in frequency domain. In addition, comparison of the results obtained both with and without absorption discloses the good characteristics in time domain.展开更多
It can be beneficial to reduce vibrations in shipboard piping, so the authors designed a new kind of piping damper with a plunger-type accumulator.Special requirements for the piping damper included low impact displac...It can be beneficial to reduce vibrations in shipboard piping, so the authors designed a new kind of piping damper with a plunger-type accumulator.Special requirements for the piping damper included low impact displacement, low speed, as well as an appropriate locking speed.Inside the damper, a plunger-type accumulator was installed and on the outside of the piston rod, a tube with exposed corrugations was added.Between the piston and the cylinder, a clearance seal was added.Using mathematical modeling, the effects of the dynamic performance of the damper's impact displacement on vibrations were observed.Changes to the clearance between the piston and the cylinder, the stiffness of the spring in the accumulator, the throttle valve size, and locking speed resistance of the damper were respectively simulated and studied.Based on the results of the simulation, dampers with optimal parameters were developed and tested with different accumulator spring stiffnesses and different throttles.The simulation and experimental results showed that parameters such as seal clearance between piston and cylinder, accumulator spring stiffness and throttle parameters have significant effects on the damper's impact displacement, low speed resistance and locking speed.展开更多
Panel methods for the calculation of wavemaking resistance result in a linear equation system for the unknown singularities.The coefficient matrix is full but not well conditioned.In this paper an incomplete LU decomp...Panel methods for the calculation of wavemaking resistance result in a linear equation system for the unknown singularities.The coefficient matrix is full but not well conditioned.In this paper an incomplete LU decomposition (ILU) method and a combined multigrid ILU method are used to solve the linear system.Systematic computations using the ILU method have shown that the CPU time can be reduced to 30% to 40% of that using an incomplete Gaussian elimination method. In the proposed multigrid ILU method an averaged restriction and a piecewise constant prolongation are used.The construction of the coefficient matrix at coarse levels is based on geometrical considerations.It turns out that the condition of the relative consistency is fulfilled.Comparison computations have shown that nearly the same results were obtained.However,due to additional CPU time needed for the execution of the matrix vector products in the restriction and the prolongation proceses of the multigrid method,a further reduction of the total CPU time could not be reailized.展开更多
Using the axial symmetry results of marker and cell (MAC) method as initial value in this paper, two numerical calculating methods are presented for the late wavemaking response induced by explosion in harbour. One of...Using the axial symmetry results of marker and cell (MAC) method as initial value in this paper, two numerical calculating methods are presented for the late wavemaking response induced by explosion in harbour. One of the methods is the superposition method of the vibration mode based on fluid slosh in container. Another one is the joining method of the MAC results with the shallow wave theory calculation in time domain. As a practical example, it is conducted to the numerical calculation about 1000 ton TNT equivalent explosion within touch of water surface. The results show that it can be rationally described with the methods to the wavemaking progress and character. The numerical results are identical with the observed scene on the spot experiment. The methods are simple and applicable in the engineering design.展开更多
基金financially supported by the National Basic Research Program of China(973 ProgramGrant No.2013CB036101)+1 种基金the National Natural Science Foundation of China(Grant Nos.50879098 and 51221961)Science and Technology Research Projects of Liaoning Provincial Education Department(Grant No.LS2010032)
文摘Physical model tests with highly reflective structures often encounter a problem of multiple reflections between the structures and the wavemaker. This paper presents a piston-type active absorbing wavemaker system which can absorb most of the reflections. Based on the first-order wavemaker theory, a frequency domain absorption transfer function is modeled. Its time realization can be achieved by designing an IIR digital filter, which is used to control the absorbing wavemaker system. In a real system, time delays often exist in the wave making process. Thus a delay compensation term to the transfer function is proposed. Experimental results show that the system performs well for both regular and irregular waves with periods from 0.6 s to 2.0 s, and the absorption capability is larger than 96.5% at target wave fields.
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.
文摘The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge and the wall of the tank.In this study,we analyze the influence of this gap on the wave making performance of the plunger using two-dimensional(2 D)CFD calculations for a range of nearly linear wave conditions and compare the results with both experimental measurements and linear potential flow theory.Three wedge-shaped profiles,all with the same submerged volume,are considered.Moreover,the generated waves are compared with the predictions of linear potential flow theory.The calculations are made using the commercial ANSYS FLUENT finite-volume code with dynamic meshes to solve the Navier-Stokes equations and the volume of fluid scheme to capture the air-water interface.Furthermore,the linear potential flow solution of Wu(J Hydraul Res 26:481-493,1988)is extended to consider an arbitrary profile and serve as a reference solution.The amplitude ratios of the generated waves predicted by the CFD calculations compare well with the predictions of linear potential flow theory for a simple wedge,indicating that viscous effects do not influence this ratio for small-amplitude motions in 2 D.By contrast,significant higher harmonic components are produced by larger amplitude motions.Also,the simple wedge is found to produce the smallest spurious higher harmonic content in the far-field wave.
文摘Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in resonance. A prominent approach to avoid multiple reflections is active control of the wavemaker. This paper proposes a simple and practical active control algorithm for piston-type wavemaker. The block diagram of the control system is presented in real time domain. It is shown that there is no need to use any transfer function or filter in the feedback and feed forward loops and the use of constant gains can yield acceptable results. In the operating frequency range(0.25-2 Hz), it is revealed that the proposed system is very effective at suppressing the excitation of resonant sloshing for regular wave. In the case of irregular waves, it is depicted that the experimental waves agree quite well with the desired wave elevation in frequency domain. In addition, comparison of the results obtained both with and without absorption discloses the good characteristics in time domain.
基金Supported by the National Natural Science Foundation of China under Grant No.10972086
文摘It can be beneficial to reduce vibrations in shipboard piping, so the authors designed a new kind of piping damper with a plunger-type accumulator.Special requirements for the piping damper included low impact displacement, low speed, as well as an appropriate locking speed.Inside the damper, a plunger-type accumulator was installed and on the outside of the piston rod, a tube with exposed corrugations was added.Between the piston and the cylinder, a clearance seal was added.Using mathematical modeling, the effects of the dynamic performance of the damper's impact displacement on vibrations were observed.Changes to the clearance between the piston and the cylinder, the stiffness of the spring in the accumulator, the throttle valve size, and locking speed resistance of the damper were respectively simulated and studied.Based on the results of the simulation, dampers with optimal parameters were developed and tested with different accumulator spring stiffnesses and different throttles.The simulation and experimental results showed that parameters such as seal clearance between piston and cylinder, accumulator spring stiffness and throttle parameters have significant effects on the damper's impact displacement, low speed resistance and locking speed.
文摘Panel methods for the calculation of wavemaking resistance result in a linear equation system for the unknown singularities.The coefficient matrix is full but not well conditioned.In this paper an incomplete LU decomposition (ILU) method and a combined multigrid ILU method are used to solve the linear system.Systematic computations using the ILU method have shown that the CPU time can be reduced to 30% to 40% of that using an incomplete Gaussian elimination method. In the proposed multigrid ILU method an averaged restriction and a piecewise constant prolongation are used.The construction of the coefficient matrix at coarse levels is based on geometrical considerations.It turns out that the condition of the relative consistency is fulfilled.Comparison computations have shown that nearly the same results were obtained.However,due to additional CPU time needed for the execution of the matrix vector products in the restriction and the prolongation proceses of the multigrid method,a further reduction of the total CPU time could not be reailized.
基金Subsidized subject financially supported by the National Natural Science Foundation of China
文摘Using the axial symmetry results of marker and cell (MAC) method as initial value in this paper, two numerical calculating methods are presented for the late wavemaking response induced by explosion in harbour. One of the methods is the superposition method of the vibration mode based on fluid slosh in container. Another one is the joining method of the MAC results with the shallow wave theory calculation in time domain. As a practical example, it is conducted to the numerical calculation about 1000 ton TNT equivalent explosion within touch of water surface. The results show that it can be rationally described with the methods to the wavemaking progress and character. The numerical results are identical with the observed scene on the spot experiment. The methods are simple and applicable in the engineering design.