期刊文献+
共找到14,793篇文章
< 1 2 250 >
每页显示 20 50 100
Temporary plugging agent transport behavior within visualized multi-fracture created during TPDF in a horizontal well: An experimental study
1
作者 Yu-Shi Zou Dian-Yu Li +4 位作者 Can Yang Yan-Chao Li Shi-Cheng Zhang Long-Qing Zou Xin-Fang Ma 《Petroleum Science》 2025年第9期3671-3687,共17页
Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,... Temporary plugging and diversion fracturing(TPDF)is widely used to promote the uniform and complex distribution of multi-clustered hydraulic fractures(HFs)in a horizontal well of the unconventional formations.However,the migration behavior of temporary plugging agent(TPA),as a function of the concentration and particle size of TPA and cluster-perforation numbers,etc.,determining the effectiveness of this technique,remains unclear.Therefore,this study conducted innovatively a series of TPDF simulation experiments on transparent polymethyl methacrylate(PMMA)specimens(cubic block of 30 cm×30 cm×30 cm)to explore visually the migration behavior of TPA in multi-clustered HFs in a horizontal well.A laboratory hydraulic sandblasting perforation completion technique was implemented to simulate the multi-cluster perforations.All the distributions of wellbore,perforations,HFs,and TPA can be seen clearly inside the PMMA specimen post the experiment.The results show that there are four characteristic plugging positions for the TPA:mouth of HF,middle of HF,tip of HF,and the intersection of HFs.Small particle size TPA tends to migrate to the fracture tip for plugging,while large particle size TPA tends to plug at the fracture mouth.The migration of the TPA is influenced obviously by the morphology of the fracture wall.A smooth fracture wall is conducive to the migration of the TPA to the far end of HFs,but not conducive to generating the plugging zone and HF diversion.In contrast,a"leaf vein"fracture of rough wall is conducive to generating the plugging layer and the diversion of HFs,but not conducive to the migration of the TPA to the far end of HFs.The migration ability of TPA in a"shell"pattern is intermediate between the two above cases.Increasing TPA concentration can encourage TPA to migrate more quickly to the characteristic plugging position,and thereby to promote the creation of effective plugging and subsequently the multi-stage diversion of the HFs.Nevertheless,excessive concentration may cause the TPA to settle prematurely,affecting the propagation of the HFs to the far end.Increasing the number of clusters to a certain extent can encourage TPA to migrate into the HFs and form plugging,and promote the diversion.An evaluation system for the migration ability of granular TPA has been established,and it was calculated that when there is no plugging expectation target,the comprehensive migration ability of small particle size TPA is stronger than that of large particle size TPA.This research provides theoretical foundation for the optimization of temporary plugging parameters. 展开更多
关键词 Temporary plugging and diversion fracturing(TPDF) Polymethyl methacrylate(PMMA) Multi-cluster perforation Temporary plugging agent migration Visualization plugging position
原文传递
Plugging mode of flaky lost circulation materials within fractures and mechanism to enhance pressure-bearing capacity for the plugging zone
2
作者 Kun Guo Yi-Li Kang +3 位作者 Cheng-Yuan Xu Chong Lin Ling-Jie Zhang Li-Jun You 《Petroleum Science》 2025年第8期3315-3332,共18页
During drilling operations in deep fractured tight gas reservoirs,lost circulation of working fluid frequently occurs due to the formationʼs low pressure-bearing capacity.Adding lost circulation materials(LCMs)to dril... During drilling operations in deep fractured tight gas reservoirs,lost circulation of working fluid frequently occurs due to the formationʼs low pressure-bearing capacity.Adding lost circulation materials(LCMs)to drilling fluids is the most common method for controlling lost circulation.Among these,granular LCMs are widely used,but the application frequency of flaky LCMs has been increasing annually due to their unique morphology.However,the migration and plugging behavior of flaky LCMs within fractures,and the mechanisms enhancing the pressure-bearing capacity of the plugging zone are not well understood.Therefore,this study conducted visual plugging experiments and dynamic fracture plugging experiments to evaluate the plugging mode and pressure-bearing capacity of the plugging slurry with various particle sizes and concentrations of flaky LCMs.The experimental results demonstrate that the fracture plugging process can be divided into four stages:uniform flow stage of the plugging slurry,formation and development stage of the bridging area,formation and development stage of the plugging area,and pressure-bearing stage of the plugging zone.The inclusion of flaky LCMs notably reduces the duration of stages 1 and 2,while simultaneously increasing the proportion of the plugging zone and enhancing its surface porosity.Flaky LCMs reduce the effective fracture width through“interception”and“co-bridging”modes,thus improving plugging zone formation efficiency.Appropriate particle size and concentration of flaky LCMs increase the area and length of the plugging zone.This reduces the fracture width increment caused by injection pressure and enhances frictional force between the plugging zone and fracture surface,thereby improving the pressure-bearing capacity of the plugging zone.However,excessively high concentrations of flaky LCMs result in decreased structural stability of the plugging zone,and excessively large particle sizes increase the risk of plugging outside fracture inlet.The recommended concentration of flaky LCMs in the plugging slurry is 2%–3%,with a particle size 1.2 to 1.5 times that of the bridging granular LCMs and not exceeding twice the fracture width.This study provides a theoretical foundation for selecting LCMs and designing plugging formulations for field applications. 展开更多
关键词 Lost circulation Flaky lost circulation materials Fracture plugging zone Visualization Pressure-bearing capacity
原文传递
Preparation and Application of an Epoxy Soybean Oil-Based Plugging Agent
3
作者 Yongming Li Dingyuan Zhang +1 位作者 Yadong Chen Jiandu Ye 《Fluid Dynamics & Materials Processing》 2025年第2期261-277,共17页
Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields.However,the widespread use of epoxy resin is constrained by its high cost and non-renewable origin,while plant-based resins o... Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields.However,the widespread use of epoxy resin is constrained by its high cost and non-renewable origin,while plant-based resins often suffer from inadequate mechanical properties,which limit their effectiveness in such applications.This study introduces BEOPA,an innovative,renewable,high-strength resin plugging agent derived from epoxidized soybean oil(ESO)and enhanced with bisphenol A-type benzoxazine(BZ).In this study,the synthesis process,reactionmechanism,and application performance of this novelmaterial are systematically presented,explored and optimized.It is shown that the optimal formulation of BEOPA includes 41.4 wt%ESO,24.8 wt%BZ,24.8 wt%methylhexahydrophthalic anhydride(MHHPA),8.2 wt%styrene(ST),and 0.8 wt%N,N-dimethylbenzylamine(BDMA),yielding an impressive compressive strength of 93.7 MPa.The integration of ESO and BZ creates an intricate and robust double crosslinking network,significantly enhancing material strength and durability.BEOPA exhibits a tunable curing time,ranging from 0.5 to 15 h,with viscosities below 300 mPa⋅s at 25℃and 75mPa⋅s at 50℃.Furthermore,it demonstrates exceptional thermal stability within the 100℃-150℃range,even in environments with mineral salt concentrations as high as 43,330 mg/L.Remarkably,BEOPA achieves superior plugging performance,sustaining breakthrough pressures exceeding 29.7 MPa in 1 mm crack cores. 展开更多
关键词 Casing damage epoxidized soybean oil BENZOXAZINE mechanical properties plugging properties
在线阅读 下载PDF
Experimental study of a circulation agent dynamic plugging for multi-scale natural fractures
4
作者 Zhao-Wen Hu Yi-Qun Zhang +3 位作者 Jin-Shan Wang Xin-Yu Wang Yu Qin Ya Liu 《Petroleum Science》 2025年第9期3641-3654,共14页
Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthe... Lost circulation critically jeopardizes drilling safety and efficiency,and remains an unresolved challenge in oil and gas engineering.In this paper,by utilizing the self-developed dynamic plugging apparatus and synthetic cores containing large-scale fractures,experimental research on the circulation plugging of different materials was conducted.Based on the D90 rule and fracture mechanical aperture model,we analyze the location of plugging layer under dynamic plugging mechanism.By setting different parameters of fracture width and injection pressure,the laws of cyclic plugging time,pressure bearing capacity and plugging layers formation were investigated.The results show that the comprehensive analysis of particle size and fracture aperture provides an accurate judgment of the entrance-plugging phenomenon.The bridging of solid materials in the leakage channel is a gradual process,and the formation of a stable plug requires 2–3 plug-leakage cycles.The first and second cyclic plugging time was positively correlated with the fracture width.Different scales of fractures were successfully plugged with the bearing pressure greater than 6 MPa,but there were significant differences in the composition of the plugging layer.The experimental results can effectively prove that the utilized plugging agent is effective and provides an effective reference for dynamic plugging operation. 展开更多
关键词 Dynamic plugging Large scale fracture Lost circulation material Laboratory experiments Fracture aperture
原文传递
Enhancing uniformity of multi-fracture propagation by temporary plugging and diversion fracturing in a horizontal well with multicluster perforations
5
作者 Xin Chang Shi-Long Teng +2 位作者 Xing-Yi Wang Yin-Tong Guo Chun-He Yang 《Petroleum Science》 2025年第9期3688-3708,共21页
Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion o... Multi-stage and multi-cluster fracturing(MMF)is a crucial technology in unconventional oil and gas development,aiming to enhance production by creating extensive fracture networks.However,achieving uniform expansion of multi-cluster hydraulic fractures(HFs)in MMF remains a significant challenge.Field practice has shown that the use of temporary plugging and diversion fracturing(TPDF)can promote the balanced expansion of multi-cluster HFs.This study conducted TPDF experiments using a true triaxial fracturing simulation system setting a horizontal well completion with multi-cluster jetting perforations to investigate the equilibrium initiation and extension of multi-cluster fractures.The influence of key parameters,including cluster spacing,fracturing fluid viscosity,differential stress,and fracturing fluid injection rate,on fracture initiation and propagation was systematically examined.The results indicate that while close-spaced multi-cluster fracturing significantly increases the number of HFs,it also leads to uneven extension of HFs in their propagation.In contrast,TPDF demonstrates effectiveness in mitigating uneven HF extension,increasing the number of HFs,and creating a larger stimulated reservoir volume,ultimately leading to improved oil and gas well productivity.Moreover,under conditions of high differential stress,the differential stress within the formation exerts a stronger guiding effect in HFs,which are more closely aligned with the minimum principal stress.Low-viscosity fluids facilitate rapid and extensive fracture propagation within the rock formation.High-volume fluid injection,on the other hand,more comprehensively fills the formation.Therefore,employing lowviscosity and high-volume fracturing is advantageous for the initiation and extension of multi-cluster HFs. 展开更多
关键词 Non-uniformity of fracture propagation Temporary plugging and diversion FRACTURING Multi-cluster hydraulic fracturing Fracture propagation
原文传递
Combination of Plugging and Acidization Improves Injection Profile
6
作者 赵普春 赵化廷 杨新明 《Petroleum Science》 SCIE CAS CSCD 2004年第4期77-87,共11页
Plugging agent treatment and acid stimulation have completely different mechanisms for improving injection profiles. In this paper, a hybrid procedure is introduced to reduce the damage of the plugging agent to low a... Plugging agent treatment and acid stimulation have completely different mechanisms for improving injection profiles. In this paper, a hybrid procedure is introduced to reduce the damage of the plugging agent to low and medium permeability zones and the penetration radius of acid into high permeability zones. The procedure is: First inject plugging agent to block high permeability zones, and then inject acid to remove plugging agent damage from the low and medium permeability zones and stimulate them. To perform this procedure successfully, three kinds of plugging agents, namely strong strength plugging agent for the wells with fractures or high permeability streaks, weak gel for those with thick layer in which serious heterogeneity exists, temporary plugging agent for those in which the absorption ability of high permeability zones needs maintaining, were screened out for use in different reservoirs. Several acid systems were evaluated to be compatible with the three kinds of plugging agents. The objectives of this paper are:(1)To show the screen results about the compatible plugging agent and acid; 2 To show how to optimize the operation process;(3)To tell some experience gained ( ) from the oilfield applications of this technique. From Jan. 2001 to Dec. 2002, 46 operations using this procedure were carried out in Weicheng and Mazhai Oilfields of SINOPEC. Results show that the average benefit/cost ratio is over 3.5. Experience acquired from these applications was summarized in the paper. 展开更多
关键词 Profile Control plugging and acid inject profile IMPROVE TECHNIQUE
原文传递
Experimental investigation of enhancement of carbon dioxide foam stability, pore plugging, and oil recovery in the presence of silica nanoparticles 被引量:8
7
作者 Abdul Rahim Risal Muhammad A.Manan +3 位作者 Nurudeen Yekeen Nur Bashirah Azli Ali Mohamed Samin Xin Kun Tan 《Petroleum Science》 SCIE CAS CSCD 2019年第2期344-356,共13页
The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated fro... The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated from the pressure drop induced during foam propagation in porous media. The results clearly showed that the modified Si02 nanoparticlestabilized foam exhibited high stability, and the differential pressure increased in porous media by as much as three times.The addition of SiO_2 nanoparticles to the foaming dispersions further mitigated the adverse effect of oil toward the foam pore plugging ability. Consequently, the oil recovery increased in the presence of nanoparticles by approximately 15%during the enhanced oil recovery experiment. The study suggested that the addition of surface-modified silica nanoparticles to the surfactant solution could considerably improve the conventional foam stability and pore plugging performance in porous media. 展开更多
关键词 Foam PORE plugging Surface-modified NANOPARTICLE Enhanced OIL RECOVERY
原文传递
Analysis and Online Diagnosis on Plugging Fault of Servo Valve in Electro-hydraulic Regulating System of Steam Turbine 被引量:6
8
作者 WANG Xuanyin LI Xiaoxiao LI Fushang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期233-237,共5页
Through the study on the output signals of the electro-hydraulic regulating system in the thermal power plant, a novel method for online diagnosis of the plugging fault in the servo valve is presented. With the use of... Through the study on the output signals of the electro-hydraulic regulating system in the thermal power plant, a novel method for online diagnosis of the plugging fault in the servo valve is presented. With the use of the AMESIM software, the changes of the piston displacement, the oil pressure, the magnitude attenuation and the phase lag of the system under different plugging states are studied after simulation. Besides, the influences of the symmetrical and unsymmetrical plugging on the system are also compared and the characteristic table is given. The duo-neural network is put forward to achieve an online diagnosis on the plugging fault of the servo valve. The first level of network helps to make the qualitative diagnosis of the plugging position while the second level is for the quantitative diagnosis of the degree of the plugged position. The research results show that plugging at different positions exerts different influences on the performance of the system. The unsymmetrical plugging mainly affects the regulation time while the symmetrical plugging leads to great changes in the magnitude attenuation and the phase lag. 展开更多
关键词 steam turbine regulating system plugging diagnosis AMESIM software
在线阅读 下载PDF
Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations 被引量:12
9
作者 Wei-Ji Wang Zheng-Song Qiu +2 位作者 Han-Yi Zhong Wei-An Huang Wen-Hao Dai 《Petroleum Science》 SCIE CAS CSCD 2017年第1期116-125,共10页
Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radica... Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcoholwater medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive mono- mer N-isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA- St) nanospheres at 80 ℃, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD- SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability 展开更多
关键词 Nanoparticle plugging agent Polymermicrospheres Thermo-sensitive polymer Wellborestability - Shale gas - Drilling fluid
原文传递
Plugging behaviors of temporary plugging particles in hydraulic fractures 被引量:4
10
作者 GUO Jianchun ZHAN Li +5 位作者 LU Qianli QI Tianjun LIU Yuxuan WANG Xin CHEN Chi GOU Xinghao 《Petroleum Exploration and Development》 SCIE 2023年第2期464-472,共9页
Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experim... Using the visualized experimental device of temporary plugging in hydraulic fractures, the plugging behaviors of temporary plugging particles with different sizes and concentrations in hydraulic fractures were experimentally analyzed under the conditions of different carrier fluid displacements and viscosities. The results show that the greater the carrier fluid viscosity and displacement, the more difficult it is to form a plugging layer, and that the larger the size and concentration of the temporary plugging particle, the less difficult it is to form a plugging layer. When the ratio of particle size to fracture width is 0.45, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle and the viscosity of the carrier fluid, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 20 kg/m^(3)or the viscosity of the carrier fluid is greater than 3 mPa·s. When the ratio of particle size to fracture width is 0.60, the formation of the plugging layer is mainly controlled by the mass concentration of the temporary plugging particle, and a stable plugging layer cannot form if the mass concentration of the temporary plugging particle is less than 10 kg/m^(3). When the ratio of particle size to fracture width is 0.75, the formation of the plugging layer is basically not affected by other parameters, and a stable plugging layer can form within the experimental conditions. The formation process of plugging layer includes two stages and four modes. The main controlling factors affecting the formation mode are the ratio of particle size to fracture width, carrier fluid displacement and carrier fluid viscosity. 展开更多
关键词 hydraulic fracture temporary plugging and diversion temporary plugging particle plugging characteristics construction parameters combination
在线阅读 下载PDF
Effect of the distributor plugging ways on fluidization quality and particle stratification in air dense medium fluidized bed 被引量:9
11
作者 Zhonglin Gao Xuesen Chai +3 位作者 Enhui Zhou Ying Jia Chenlong Duan Ligang Tang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期883-888,共6页
Gas-solid fluidized bed separation is a highly efficient and clean technique for coal separation,and can effectively remove ash and sulfur contained gangue minerals from coal.However,the fine coal plugging distributor... Gas-solid fluidized bed separation is a highly efficient and clean technique for coal separation,and can effectively remove ash and sulfur contained gangue minerals from coal.However,the fine coal plugging distributor often leads to uneven fluidization and affects the separation effect.In this paper,different plugging ways were designed to study their effects on the fluidization characteristics and particle mixing.It was found that when the plugging phenomenon occurs,the minimum fluidization velocity of the fluidized bed gradually decreases as the plugging area enlarges.The difference between the top and the bottom of the bed minimum fluidization velocity increases accordingly,and a“stagnation phenomenon”occurs in the bed.The standard deviation of pressure fluctuations at the top of the bed is smaller than that at the bottom of the bed,which is the opposite of normal conditions.As the area of the plugging increases,the dead zone on the side wall of the fluidized bed significantly increases.The size of the dead zone is rapid reducing at the initial stage.It was noticed that the stratification of the low-density products is particularly affected by plugging,whereas the stratification of high-density products is not obviously influenced by certain conditions. 展开更多
关键词 Dry separation DISTRIBUTOR plugging Particle mixing
在线阅读 下载PDF
Double network self-healing hydrogel based on hydrophobic association and ionic bond for formation plugging 被引量:10
12
作者 Ying-Rui Bai Qi-Tao Zhang +2 位作者 Jin-Sheng Sun Guan-Cheng Jiang Kai-He Lv 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2150-2164,共15页
Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a seri... Self-healing hydrogels have attracted tremendous attention in the field of oil and gas drilling and production engineering because of their excellent self-healing performance after physical damage.In this study,a series of double network self-healing(DN_(SA))hydrogels based on hydrophobic association and ionic bond were prepared for plugging pores and fractures in formations in oil and gas drilling and production engineering.The mechanical,rheological,and self-healing properties of the DN_(SA)hydrogels were investigated.Results revealed that the DN_(SA)hydrogels exhibited excellent mechanical properties with a tensile stress of 0.67 MPa and toughness of 7069 kJ/cm^(3) owing to the synergistic effect of the double network.In addition,the DN_(SA)hydrogels exhibited excellent compression resistance,notch insensitivity,and self-healing properties.The DN_(SA)-2 hydrogel was granulated and made into gel particles with different particle sizes and used as a plugging agent.The self-healing mechanism of DN_(SA)-2 hydrogel particles in fractures was explored,and it’s plugging effect on fractures of different widths and porous media of different permeabilities were investigated.Experimental results revealed that the plugging capacity of the DN_(SA)-2 hydrogel particles for a fracture with width of 5 mm and a porous medium with a permeability of 30μm^(2) was 3.45 and 4.21 MPa,respectively,which is significantly higher than those of commonly used plugging agents in the oilfield.The DN_(SA)hydrogels with excellent mechanical and self-healing properties prepared in this study will provide a new approach for applying hydrogels in oil and gas drilling and production engineering. 展开更多
关键词 Self-healing hydrogel Hydrophobic association Ionic bond Mechanical property Rheological property Formation plugging
原文传递
Formation mechanisms of fracture plugging zone and optimization of plugging particles 被引量:2
13
作者 LEI Shaofei SUN Jinsheng +5 位作者 BAI Yingrui LYU Kaihe ZHANG Shupei XU Chengyuan CHENG Rongchao LIU Fan 《Petroleum Exploration and Development》 CSCD 2022年第3期684-693,共10页
As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of th... As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of the plugging zone in fractured formations,analyze composition and ratios of different sizes of particles in the plugging zone,and reveal the essence and driving energy of the formation and damage of the plugging zone.New criteria for selecting lost circulation materials are proposed.The research results show that the formation of the plugging zone has undergone a process from inertial flow,elastic flow,to quasi-static flow.The plugging zone is composed of fracture mouth plugging particles,bridging particles and filling particles,and the proportion of the three types of particles is an important basis for designing drilling fluid loss control formula.The essence of the construction of the plugging zone is non-equilibrium Jamming phase transition.The response of the plugging zone particle system to pressure is driven by entropy force;the greater the entropy,the more stable the plugging zone.Lost circulation control formula optimized according to the new criteria has better plugging effect than the formula made according to conventional plugging rules and effectively improves the pressure-bearing capacity of the plugging zone.The research results provide a theoretical and technical basis for the lost circulation control of fractured formations. 展开更多
关键词 fractured formation drilling fluid loss plugging zone plugging mechanism plugging particles optimization criterion
在线阅读 下载PDF
Complex fracture propagation model and plugging timing optimization for temporary plugging fracturing in naturally fractured shale 被引量:4
14
作者 TANG Xuanhe ZHU Haiyan +1 位作者 CHE Mingguang WANG Yonghui 《Petroleum Exploration and Development》 2023年第1期152-165,共14页
In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution a... In this paper,a viscoelasticity-plastic damage constitutive equation for naturally fractured shale is deduced,coupling nonlinear tensile-shear mixed fracture mode.Dynamic perforation-erosion on fluid re-distribution among multi-clusters are considered as well.DFN-FEM(discrete fracture network combined with finite element method)was developed to simulate the multi-cluster complex fractures propagation within temporary plugging fracturing(TPF).Numerical results are matched with field injection and micro-seismic monitoring data.Based on geomechanical characteristics of Weiyuan deep shale gas reservoir in Sichuan Basin,SW China,a multi-cluster complex fractures propagation model is built for TPF.To study complex fractures propagation and the permeability-enhanced region evolution,intersecting and competition mechanisms between the fractures before and after TPF treatment are revealed.Simulation results show that:fracture from middle cluster is restricted by the fractures from side-clusters,and side-clusters plugging is benefit for multi fractures propagation in uniformity;optimized TPF timing should be delayed within a higher density or strike of natural fractures;Within a reservoir-featured natural fractures distribution,optimized TPF timing for most clustered method is 2/3 of total fluid injection time as the optimal plugging time under different clustering modes. 展开更多
关键词 shale gas naturally fractured shale temporary plugging fracturing fracture propagation plugging timing discrete fracture network finite element method
在线阅读 下载PDF
Effects of fluid flow rate and viscosity on gravel-pack plugging and the optimization of sand-control wells production 被引量:2
15
作者 DONG Changyin ZHOU Yugang +4 位作者 CHEN Qiang ZHU Chunming LI Yanlong LI Xiaobo LIU Yabin 《Petroleum Exploration and Development》 2019年第6期1251-1259,共9页
Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the me... Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life. 展开更多
关键词 gravel-pack sand RETENTION experiment plugging law viscosity-velocity index working scheme OPTIMIZATION method plugging simulation
在线阅读 下载PDF
Plugging performance and mechanism of an oil-absorbing gel for lost circulation control while drilling in fractured formations 被引量:7
16
作者 Ying-Rui Bai Li-Yao Dai +4 位作者 Jin-Sheng Sun Guan-Cheng Jiang Kai-He Lv Rong-Chao Cheng Xiao-Sen Shang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2941-2958,共18页
Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rig... Lost circulation of drilling fluid is one of the most common engineering problems in the drilling process of fractured formations.In this study,an oil-absorbing polymer gel synthesized using compound monomers with rigid and flexible chains was applied to control the oil-based drilling fluid loss while drilling.The microstructure,oil-absorbing performance,and plugging performance the gel was investigated.A large number of dense pores on the surface of the gel were observed,which allowed the oil molecules to enter the internal space of the gel.The initial oil absorption capacity of the gel was fast,and it increased with the increase in the temperature and decrease in the particle size,reaching 20.93 g/g at140℃.At a high temperature of 140℃,the bearing pressure capacity of the gel formula containing particles of different particle sizes reached 7.6 MPa for a fracture of a width of 3 mm,showing that the oil-absorbing gel have excellent plugging performance at high temperature.Plugging mechanism of the gel was investigated through visualized fracture plugging experiments.Results show that the dynamic migratio n,particle-swelling,particle-bridging,particle-aggregation,deformation-filling,and compaction-plugging contribute to the whole lost circulation control process,reflecting that the plugging performance can be effectively enhanced by improving the aggregation and filling degrees of the gel with different particle sizes. 展开更多
关键词 Lost circulation Oil-absorbing gel Oil absorption capacity plugging mechanism Fractured formation
原文传递
A bull-heading water control technique of thermo-sensitive temporary plugging agent 被引量:4
17
作者 LIU Pingde WEI Falin +3 位作者 ZHANG Song ZHU Xiuyu WANG Longfei XIONG Chunming 《Petroleum Exploration and Development》 2018年第3期536-543,共8页
Aimed at the disadvantages of secondary damage to oil layers caused by the conventional bull-heading water control technique, a thermo-sensitive temporary plugging agent for water control was synthesized by water solu... Aimed at the disadvantages of secondary damage to oil layers caused by the conventional bull-heading water control technique, a thermo-sensitive temporary plugging agent for water control was synthesized by water solution polymerization and applied in the field with a new secondary temporary plugging technique. The optimization and performance evaluation of thermo-sensitive temporary plugging agent were carried out through laboratory experiments. The optimized formula is as follows:(6%-8%) acrylamide +(0.08%-0.12%) ammonium persulfate +(1.5%-2.0%) sepiolite +(0.5%-0.8%) polyethylene glycol diacrylate. The thermo-sensitive temporary plugging agent is suitable for formation temperatures of 70-90 ?C, it has high temporary plugging strength(5-40 k Pa), controllable degradation time(1-15 d), the apparent viscosity after degradation of less than 100 m Pa?S and the permeability recovery value of simulated cores of more than 95%. Based on the research results, secondary temporary plugging technique was used in a horizontal well in the Jidong Oilfield. After treatment, the well saw a drop of water cut to 27%, and now it has a water cut of 67%, its daily increased oil production was 4.8 t, and the cumulative oil increment was 750 t, demonstrating that the technique worked well in controlling water production and increasing oil production. 展开更多
关键词 bull-heading water control TECHNIQUE THERMO-SENSITIVE TEMPORARY plugging agent secondary TEMPORARY plugging TECHNIQUE thermal degradation property RESERVOIR protection
在线阅读 下载PDF
LEAKAGE-PLUGGING WHILE DRILLING AND PLUGGING AGENTS 被引量:1
18
作者 Peng Zhenbin Zhang Xuzhi Dai Qianwei(Department of Geology, Central South University ofTechnology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 1996年第1期29-32,共4页
This paper describes a series of plugging agents which have been developed these years by the authors. The features of these agents can bestated as: (1) Stopping losses without stopping drilling; (2) High ratio of suc... This paper describes a series of plugging agents which have been developed these years by the authors. The features of these agents can bestated as: (1) Stopping losses without stopping drilling; (2) High ratio of success; (3) Improving fluids properties; (4) Suiting to many types of losses, even large cracks and caves; (5) Perfect efficiency in different conditions of pollution such as calcium, salt pollution and high temperature; (6) Sufficient resources of raw materials, nopoison, noharm, no pollution to the environment; (7) Convenience in use; (8) Lower cost. The properties, mechanisms and applications of these agents are also described in this paper. 展开更多
关键词 Leakageplugging DRILLING plugging AGENTS
在线阅读 下载PDF
Development of degradable pre-formed particle gel(DPPG)as temporary plugging agent for petroleum drilling and production 被引量:8
19
作者 Dao-Yi Zhu Xing-Yu Fang +3 位作者 Ren-Xian Sun Zeng-Hao Xu Yang Liu Ji-Yang Liu 《Petroleum Science》 SCIE CAS CSCD 2021年第2期479-494,共16页
Temporary plugging agent(TPA)is widely used in many fields of petroleum reservoir drilling and production,such as temporary plugging while drilling and petroleum well stimulation by diverting in acidizing or fracturin... Temporary plugging agent(TPA)is widely used in many fields of petroleum reservoir drilling and production,such as temporary plugging while drilling and petroleum well stimulation by diverting in acidizing or fracturing operations.The commonly used TPA mainly includes hard particles,fibers,gels,and composite systems.However,current particles have many limitations in applications,such as insufficient plugging strength and slow degradation rate.In this paper,a degradable pre-formed particle gel(DPPG)was developed.Experimental results show that the DPPG has an excellent static swelling effect and self-degradation performance.With a decrease in the concentration of total monomers or cross-linker,the swelling volume of the synthesized DPPG gradually increases.However,the entire self-degradation time gradually decreases.The increase in 2-acrylamide-2-methylpropanesulfonic acid(AMPS)in the DPPG composition can significantly increase its swelling ratio and shorten the self-degradation time.Moreover,DPPG has excellent high-temperature resistance(150°C)and high-salinity resistance(200,000 mg/L NaCl).Core displacement results show that the DPPG has a perfect plugging effect in the porous media(the plugging pressure gradient was as high as 21.12 MPa),and the damage to the formation after degradation is incredibly minor.Therefore,the DPPG can be used as an up-and-coming TPA in oil fields. 展开更多
关键词 Temporary plugging agents Pre-formed particle gel(PPG) Degradable PPG Petroleum drilling Petroleum production
原文传递
Study of a plugging microbial consortium using crude oil as sole carbon source 被引量:1
20
作者 Wang Jing Yan Guiwen An Mingquan Liu Jieli Zhang Houming Chen Yun 《Petroleum Science》 SCIE CAS CSCD 2008年第4期367-374,共8页
A microbial consortium named Y4 capable of producing biopolymers was isolated from petroleum-contaminated soil in the Dagang Oilfield, China. It includes four bacterial strains: Y4-1 (Paenibacillus sp.), Y4-2 (Act... A microbial consortium named Y4 capable of producing biopolymers was isolated from petroleum-contaminated soil in the Dagang Oilfield, China. It includes four bacterial strains: Y4-1 (Paenibacillus sp.), Y4-2 (Actinomadura sp.), Y4-3 (Uncultured bacterium clone) and Y4-4 (Brevibacillus sp.). The optimal conditions for the growth of the consortium Y4 were as follows: temperature about 46 ℃, pH about 7.0 and salinity about 20.0 g/L. The major metabolites were analyzed with gas chromatographymass spectrometry (GC-MS). A comparison was made between individual strains and the microbial consortium for biopolymer production in different treatment processes. The experimental results showed that the microbial consortium Y4 could produce more biopolymers than individual strains, and the reason might be attributed to the synergetic action of strains. The biopolymers were observed with optical and electron microscopes and analyzed by paper chromatography. It was found that the biopolymers produced by the microbial consortium Y4 were insoluble in water and were of reticular structure, and it was concluded that the biopolymers were cellulose. Through a series of simulation experiments with sand cores, it was found that the microbial consortium Y4 could reduce the permeability of reservoir beds, and improve the efficiency of water flooding by growing biomass and producing biopolymers. The oil recovery was enhanced by 3.5% on average. The results indicated that the consortium Y4 could be used in microbial enhanced oil recovery and play an important role in bioremediation of oil polluted environments. 展开更多
关键词 Microbial enhanced oil recovery plugging microbial consortium biopolymers
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部