Propane dehydrogenation(PDH)is a key process for increasing the production of propylene,which is an important part of the chemical industry.Platinum-based catalysts have emerged as efficient catalysts for this reactio...Propane dehydrogenation(PDH)is a key process for increasing the production of propylene,which is an important part of the chemical industry.Platinum-based catalysts have emerged as efficient catalysts for this reaction due to their excellent activity and selectivity.However,challenges such as high platinum cost,catalyst deactivation,and side reactions remain significant barriers to their widespread use in industry.This review provides a comprehensive overview of recent advances in platinumbased catalysts for PDH,focusing on strategies to optimize their performance.We discuss the design and synthesis of Pt-based catalysts,emphasizing the role of promoters,such as Sn,Zn,Ga,and other promoters,in improving selectivity and stability.We also explore the effects of support materials and zeolite encapsulated catalysts on dispersion and activity for Pt-based catalysts.In addition,we highlight the use of machine learning to predict catalyst performance and guide the development of nextgeneration Pt-based catalyst materials.This review synthesizes insights from experimental studies and machine learning computational modeling and aims to provide a route for overcoming the limitations of Pt-based catalysts and advancing the PDH process.展开更多
The constant increase in energy demand and related environmental issues have made fuel cells an attractive technology as an alternative to conventional energy technologies.Like any technology,fuel cells face drawbacks...The constant increase in energy demand and related environmental issues have made fuel cells an attractive technology as an alternative to conventional energy technologies.Like any technology,fuel cells face drawbacks that scientific society has been focused on to improve and optimize the overall technology.Thus,the cost is the main inhibitor for this technology due to the significantly high cost of the materials used in catalyst layers.The current discussion mainly focuses on the fundamental electrochemical half-cell reaction of hydrogen oxidation reaction(HOR)and oxygen reduction reaction(ORR)that are taking place in the catalyst layers consisting of Platinum-based and Platinum-non noble metals.For this purpose,studies from the literature are presented and analyzed by highlighting and comparing the variations on the catalytic activity within the experimental catalyst layers and the conventional ones.Furthermore,an economic analysis of the main platinum group metals(PGMs)such as Platinum,Palladium and Ruthenium is introduced by presenting the economic trends for the last decade.展开更多
Platinum(Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).However,their c...Platinum(Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).However,their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction.Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts,Pt single-atom catalysts(Pt SACs)as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper.The design thoughts and synthesis of various isolated,alloyed,and nanoparticlecontained Pt SACs are summarized.The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts.To advance further research and development of Pt SACs for viable implementation in PEMFCs,various technical challenges and several potential research directions are outlined.展开更多
As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.With...As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.Within this context,the electrocatalytic ammonia oxidation reaction(AOR)is pivotal.Platinum(Pt),recognized as the most efficient AOR catalyst,has undergone extensive development over the years,yielding notable advancements across various domains,ranging from elucidating the reaction mechanism to exploring innovative materials.This review begins by elucidating the mechanism of ammonia oxidation,summarizing the evolution of the mechanism and the diverse intermediates identified through various detection methods.Subsequently,it outlines the research progress surrounding different Pt-based catalysts,followed by a discussion on standard protocols for electrochemical ammonia oxidation testing,which facilitates meaningful comparisons across studies and catalyzes the development of more efficient and potent catalysts.Moreover,the review addresses current challenges in ammonia oxidation and outlines potential future directions,providing a comprehensive outlook on the field.展开更多
Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen e...Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction...Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.展开更多
High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environm...High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
Objective:To develop and validate a radiomics prognostic scoring system(RPSS)for prediction of progressionfree survival(PFS)in patients with stageⅣnon-small cell lung cancer(NSCLC)treated with platinum-based chemothe...Objective:To develop and validate a radiomics prognostic scoring system(RPSS)for prediction of progressionfree survival(PFS)in patients with stageⅣnon-small cell lung cancer(NSCLC)treated with platinum-based chemotherapy.Methods:In this retrospective study,four independent cohorts of stageⅣNSCLC patients treated with platinum-based chemotherapy were included for model construction and validation(Discovery:n=159;Internal validation:n=156;External validation:n=81,Mutation validation:n=64).First,a total of 1,182 three-dimensional radiomics features were extracted from pre-treatment computed tomography(CT)images of each patient.Then,a radiomics signature was constructed using the least absolute shrinkage and selection operator method(LASSO)penalized Cox regression analysis.Finally,an individualized prognostic scoring system incorporating radiomics signature and clinicopathologic risk factors was proposed for PFS prediction.Results:The established radiomics signature consisting of 16 features showed good discrimination for classifying patients with high-risk and low-risk progression to chemotherapy in all cohorts(All P<0.05).On the multivariable analysis,independent factors for PFS were radiomics signature,performance status(PS),and N stage,which were all selected into construction of RPSS.The RPSS showed significant prognostic performance for predicting PFS in discovery[C-index:0.772,95%confidence interval(95%CI):0.765-0.779],internal validation(C-index:0.738,95%CI:0.730-0.746),external validation(C-index:0.750,95%CI:0.734-0.765),and mutation validation(Cindex:0.739,95%CI:0.720-0.758).Decision curve analysis revealed that RPSS significantly outperformed the clinicopathologic-based model in terms of clinical usefulness(All P<0.05).Conclusions:This study established a radiomics prognostic scoring system as RPSS that can be conveniently used to achieve individualized prediction of PFS probability for stageⅣNSCLC patients treated with platinumbased chemotherapy,which holds promise for guiding personalized pre-therapy of stageⅣNSCLC.展开更多
Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this tr...Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment.Four important transporter genes are expressed in the kidney,including organic cation transporter 2(OCT2),multidrug and toxin extrusion 1(MATEl),ATP-binding cassette subfamily B member 1 {ABCB1),and ATP-binding cassette subfamily C member 2(ABCC2),and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs.This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinumbased chemotherapy response and toxicity in NSCLC patients.Methods:A total of 403 Chinese NSCLC patients were recruited for this study.All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy.The tumor response and toxicity were evaluated after two cycles of treatment,and the patients' genomic DNA was extracted.Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response.Results:OCT2 rs316019 was associated with hepatotoxicity(P = 0.026) and hematological toxicity(P = 0.039),and MATEl rs2289669 was associated with hematological toxicity induced by platinum(P = 0.016).In addition,ABCC2rs717620 was significantly associated with the platinum-based chemotherapy response(P = 0.031).ABCB1 polymorphisms were associated with neither response nor toxicity.Conclusion:OCT2 rs316019,MATEl rs2289669,and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.Trial registration Chinese Clinical Trial Registry展开更多
Objective This study assessed the weight loss changes and gastrointestinal symptoms in patients with advanced tumors receiving platinum-containing chemotherapy.Methods We retrospectively reviewed 297 patients with adv...Objective This study assessed the weight loss changes and gastrointestinal symptoms in patients with advanced tumors receiving platinum-containing chemotherapy.Methods We retrospectively reviewed 297 patients with advanced cancers[124 gastrointestinal(GI)cancer patients,119 lung cancer patients and 54 head and neck cancer(HNC)patients]receiving first-line chemotherapy at Tongji Hospital.The patients’changes in body weight,body mass index(BMI),and biochemical parameters(serum haemoglobin and albumin levels)were compared before and after two chemotherapy cycles.Results More than half[54.88%(163/297)]of the patients had experienced unintentional weight loss in the 6 months before chemotherapy,and weight loss≥5%and≥10%of the body mass was noted in 35.69%and 20.20%of the patients,respectively.After two cycles of platinum-based chemotherapy,the proportions of patients with a>5%reduction in body weight among patients with GI,lung,and head and neck cancers were 47.5%(59/124),44.53%(53/119),and 46.2%(25/54),respectively.The patients with GI and lung cancers were more vulnerable to extreme weight loss(≥10%)than those with HNC(P=0.025).The serum hemoglobin levels were also remarkably decreased relative to those before chemotherapy(all P<0.05).Common GI symptoms reported by all patients included anorexia(61.28%),vomiting(52.53%),and nausea(51.18%).A higher proportion of patients with≥10%weight loss experienced anorexia and vomiting(OR=12.21 and 3.61,P=0.008 and 0.047,respectively).Conclusions For advanced cancer patients receiving platinum-based chemotherapy,the GI symptoms are the major factor related to their nutritional status.Appropriate nutritional screening,evaluation and treatment should be applied during the treatment of cancer in order to reduce GI symptoms and improve the patient’s nutritional status.展开更多
Cisplatin resistance still remains a major obstacle to successful treatment of cancer.The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum con...Cisplatin resistance still remains a major obstacle to successful treatment of cancer.The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum concentrations.In some models,this reduction is due to abnormal membrane protein trafficking,resulting in reduced uptake by transporters at the cell surface.Given the central role of platinum drugs in the clinic.展开更多
The residual metal impurities in cisplatin, carboplatin and oxaliplatin were determined by ICP-AES. The samples were ignited and dissolved with HCl:HNO 3 (3:1). The method is simple and accurate. By the determination ...The residual metal impurities in cisplatin, carboplatin and oxaliplatin were determined by ICP-AES. The samples were ignited and dissolved with HCl:HNO 3 (3:1). The method is simple and accurate. By the determination of the metal residues in the samples, the calculated actual daily exposure and concentration of the metal Pd, Ir, Rh, Ru, Mo, Ni, Cr, V, Cu, Mn, Fe and Zn that were less than the permitted daily exposures (PDE) and the limited concentration permitted in the EMEA guideline on the specification limits for residues of metal catalysts or metal reagents [1] . The metal residues can de adequately removed from the active pharmaceutical ingredients and the corresponding drugs. The trace metal residues will not affect human health and lead to the safety hazard by the intravenous injection.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
Objective:The aim of our study was to evaluate the in vitro antitumor activity of two novel platinum-based(II) complexes(2.3-pyridinedicarboxylic acid dehydrate platinum and 2.3-pyrazinedicarboxylic acid dehydrate pla...Objective:The aim of our study was to evaluate the in vitro antitumor activity of two novel platinum-based(II) complexes(2.3-pyridinedicarboxylic acid dehydrate platinum and 2.3-pyrazinedicarboxylic acid dehydrate platinum),which were concurrently provided with hydrophilic carboxyl group and lipophilic pyrazinyl or pyridyl group,on SW620 colorectal cancer cell line and the impact of the two compounds on the cell cycle and apoptosis of the cells when compared with the oxaliplatin,desiring the new ligand combined with hydrophilic and lipophilic properties would facilitate the transportation and transmembrane of the drugs,showing a better antitumor activity.Methods:After SW620 cells were treated with different doses of the three platinum-based agents for 24,48 and 72 h,the cell proliferation inhibition rate was determined using methyl thiazolyl tetrazolium(MTT) assay;the morphology of cells were evaluated under inverted microscope;the changes in cell cycle were determined using flow cytometry;the percent apoptosis was measured using Annexin V/PI double staining and the micromorphology of the cells after drug exposure was evaluated using scanning electron microscopy.Results:The evaluation on the proliferation inhibition rate revealed that the three platinum-based agents inhibited the SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Under optical microscope,the morphological changes such as cell shrinkage,round cells and dead cells were frequently observed after drug exposure.Cell cycle determination showed that all of the three agents could function to block the cells converting from phase S to phase G2M.Apoptosis evaluation revealed that the three agents promoted the apoptosis of SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Typical early and late apoptotic morphological changes could be detected during electron microscopy.Conclusion:The two novel platinum-based(II) complexes showed a stronger antitumor effect on SW620 cells than oxaliplatin,with the targeted site at a certain phase of cell cycle and apoptosis.展开更多
In the past decade,the advent of the epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs)has dramatically influenced the therapeutic strategies for treating lung cancer,but with tumor progression and...In the past decade,the advent of the epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs)has dramatically influenced the therapeutic strategies for treating lung cancer,but with tumor progression and drug resistance,patients will ultimately develop reduced sensitivity to EGFR-TKIs.How can we delay the emergence of drug resistance? What is the next strategy after drug resistance? How to reasonably combine platinum-based chemotherapy and EGFR-TKIs? These questions are currently the focus of lung cancer research.Clinical studies have reported that platinum-based chemotherapy can increase the sensitivity to EGFR-TKIs.However,results of pre-clinical and clinical studies have been inconsistent.The mechanisms of platinum chemotherapy and EGFR-TKIs are still unknown due to the lack of systematic research.Therefore,systematic studies are required to show the mechanisms of EGFR-TKIs and chemotherapy agents and define the markers sensitive to their combinations when given concurrently or sequentially.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
文摘Propane dehydrogenation(PDH)is a key process for increasing the production of propylene,which is an important part of the chemical industry.Platinum-based catalysts have emerged as efficient catalysts for this reaction due to their excellent activity and selectivity.However,challenges such as high platinum cost,catalyst deactivation,and side reactions remain significant barriers to their widespread use in industry.This review provides a comprehensive overview of recent advances in platinumbased catalysts for PDH,focusing on strategies to optimize their performance.We discuss the design and synthesis of Pt-based catalysts,emphasizing the role of promoters,such as Sn,Zn,Ga,and other promoters,in improving selectivity and stability.We also explore the effects of support materials and zeolite encapsulated catalysts on dispersion and activity for Pt-based catalysts.In addition,we highlight the use of machine learning to predict catalyst performance and guide the development of nextgeneration Pt-based catalyst materials.This review synthesizes insights from experimental studies and machine learning computational modeling and aims to provide a route for overcoming the limitations of Pt-based catalysts and advancing the PDH process.
文摘The constant increase in energy demand and related environmental issues have made fuel cells an attractive technology as an alternative to conventional energy technologies.Like any technology,fuel cells face drawbacks that scientific society has been focused on to improve and optimize the overall technology.Thus,the cost is the main inhibitor for this technology due to the significantly high cost of the materials used in catalyst layers.The current discussion mainly focuses on the fundamental electrochemical half-cell reaction of hydrogen oxidation reaction(HOR)and oxygen reduction reaction(ORR)that are taking place in the catalyst layers consisting of Platinum-based and Platinum-non noble metals.For this purpose,studies from the literature are presented and analyzed by highlighting and comparing the variations on the catalytic activity within the experimental catalyst layers and the conventional ones.Furthermore,an economic analysis of the main platinum group metals(PGMs)such as Platinum,Palladium and Ruthenium is introduced by presenting the economic trends for the last decade.
基金supported by the National Natural Science Foundation of China(Grant No.22272105)the Natural Science Foundation of Shanghai(Grant No.23ZR1423900).
文摘Platinum(Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).However,their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction.Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts,Pt single-atom catalysts(Pt SACs)as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper.The design thoughts and synthesis of various isolated,alloyed,and nanoparticlecontained Pt SACs are summarized.The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts.To advance further research and development of Pt SACs for viable implementation in PEMFCs,various technical challenges and several potential research directions are outlined.
基金the National Key Research and Development Program of China(No.2022YFB4102000)the National Natural Science Foundation of China(Nos.22102018 and 52171201)+5 种基金the Huzhou Science and Technology Bureau(No.2022GZ45)the China Postdoctoral Science Foundation-Funded Project(No.2022M710601)the Huzhou Science and Technology Bureau(No.2023GZ02)the Natural Science Foundation of Sichuan Province(No.24NSFSC5779)the National Natural Science Foundation of China(Nos.22322201 and 22278067)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0094)。
文摘As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.Within this context,the electrocatalytic ammonia oxidation reaction(AOR)is pivotal.Platinum(Pt),recognized as the most efficient AOR catalyst,has undergone extensive development over the years,yielding notable advancements across various domains,ranging from elucidating the reaction mechanism to exploring innovative materials.This review begins by elucidating the mechanism of ammonia oxidation,summarizing the evolution of the mechanism and the diverse intermediates identified through various detection methods.Subsequently,it outlines the research progress surrounding different Pt-based catalysts,followed by a discussion on standard protocols for electrochemical ammonia oxidation testing,which facilitates meaningful comparisons across studies and catalyzes the development of more efficient and potent catalysts.Moreover,the review addresses current challenges in ammonia oxidation and outlines potential future directions,providing a comprehensive outlook on the field.
基金Supported by the National Natural Science Foundation of China(No.52273056)the Science and Technology Development Program of Jilin Province,China(No.YDZJ202501ZYTS305)。
文摘Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金funded by the Innovative Research Group Project of the National Natural Science Foundation of China(52121004)the Research Development Fund(No.RDF-21-02-060)by Xi’an Jiaotong-Liverpool University+1 种基金support received from the Suzhou Industrial Park High Quality Innovation Platform of Functional Molecular Materials and Devices(YZCXPT2023105)the XJTLU Advanced Materials Research Center(AMRC).
文摘Seawater zinc-air batteries are promising energy storage devices due to their high energy density and utilization of seawater electrolytes.However,their efficiency is hindered by the sluggish oxygen reduction reaction(ORR)and chlorideinduced degradation over conventional catalysts.In this study,we proposed a universal synthetic strategy to construct heteroatom axially coordinated Fe–N_(4) single-atom seawater catalyst materials(Cl–Fe–N_(4) and S–Fe–N_(4)).X-ray absorption spectroscopy confirmed their five-coordinated square pyramidal structure.Systematic evaluation of catalytic activities revealed that compared with S–Fe–N_(4),Cl–Fe–N_(4) exhibits smaller electrochemical active surface area and specific surface area,yet demonstrates higher limiting current density(5.8 mA cm^(−2)).The assembled zinc-air batteries using Cl–Fe–N_(4) showed superior power density(187.7 mW cm^(−2) at 245.1 mA cm^(−2)),indicating that Cl axial coordination more effectively enhances the intrinsic ORR activity.Moreover,Cl–Fe–N_(4) demonstrates stronger Cl−poisoning resistance in seawater environments.Chronoamperometry tests and zinc-air battery cycling performance evaluations confirmed its enhanced stability.Density functional theory calculations revealed that the introduction of heteroatoms in the axial direction regulates the electron center of Fe single atom,leading to more active reaction intermediates and increased electron density of Fe single sites,thereby enhancing the reduction in adsorbed intermediates and hence the overall ORR catalytic activity.
基金supported by the Australian Research Council(ARC)Projects(DP220101139,DP220101142,and LP240100542).
文摘High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金supported by the National Key Research and Development Plan of China(No.2017YFC1309100)the National Science Fund for Distinguished Young Scholars(No.81925023)the National Natural Scientific Foundation of China(No.81771912,81901910,82072090,and 82001986)。
文摘Objective:To develop and validate a radiomics prognostic scoring system(RPSS)for prediction of progressionfree survival(PFS)in patients with stageⅣnon-small cell lung cancer(NSCLC)treated with platinum-based chemotherapy.Methods:In this retrospective study,four independent cohorts of stageⅣNSCLC patients treated with platinum-based chemotherapy were included for model construction and validation(Discovery:n=159;Internal validation:n=156;External validation:n=81,Mutation validation:n=64).First,a total of 1,182 three-dimensional radiomics features were extracted from pre-treatment computed tomography(CT)images of each patient.Then,a radiomics signature was constructed using the least absolute shrinkage and selection operator method(LASSO)penalized Cox regression analysis.Finally,an individualized prognostic scoring system incorporating radiomics signature and clinicopathologic risk factors was proposed for PFS prediction.Results:The established radiomics signature consisting of 16 features showed good discrimination for classifying patients with high-risk and low-risk progression to chemotherapy in all cohorts(All P<0.05).On the multivariable analysis,independent factors for PFS were radiomics signature,performance status(PS),and N stage,which were all selected into construction of RPSS.The RPSS showed significant prognostic performance for predicting PFS in discovery[C-index:0.772,95%confidence interval(95%CI):0.765-0.779],internal validation(C-index:0.738,95%CI:0.730-0.746),external validation(C-index:0.750,95%CI:0.734-0.765),and mutation validation(Cindex:0.739,95%CI:0.720-0.758).Decision curve analysis revealed that RPSS significantly outperformed the clinicopathologic-based model in terms of clinical usefulness(All P<0.05).Conclusions:This study established a radiomics prognostic scoring system as RPSS that can be conveniently used to achieve individualized prediction of PFS probability for stageⅣNSCLC patients treated with platinumbased chemotherapy,which holds promise for guiding personalized pre-therapy of stageⅣNSCLC.
基金supported by the National High-tech R&D Program of China(863 Program)(2012AA02A517)National Natural Science Foundation of China(81173129,81202595,81373490,81273595)
文摘Background:Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer(NSCLC);it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment.Four important transporter genes are expressed in the kidney,including organic cation transporter 2(OCT2),multidrug and toxin extrusion 1(MATEl),ATP-binding cassette subfamily B member 1 {ABCB1),and ATP-binding cassette subfamily C member 2(ABCC2),and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs.This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinumbased chemotherapy response and toxicity in NSCLC patients.Methods:A total of 403 Chinese NSCLC patients were recruited for this study.All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy.The tumor response and toxicity were evaluated after two cycles of treatment,and the patients' genomic DNA was extracted.Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response.Results:OCT2 rs316019 was associated with hepatotoxicity(P = 0.026) and hematological toxicity(P = 0.039),and MATEl rs2289669 was associated with hematological toxicity induced by platinum(P = 0.016).In addition,ABCC2rs717620 was significantly associated with the platinum-based chemotherapy response(P = 0.031).ABCB1 polymorphisms were associated with neither response nor toxicity.Conclusion:OCT2 rs316019,MATEl rs2289669,and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.Trial registration Chinese Clinical Trial Registry
基金the National Natural Science Foundation of China(No.81703215,81974381)Beijing Xisike Clinical Oncology Research Foundation(No.Y-Q201801-059,81974381)。
文摘Objective This study assessed the weight loss changes and gastrointestinal symptoms in patients with advanced tumors receiving platinum-containing chemotherapy.Methods We retrospectively reviewed 297 patients with advanced cancers[124 gastrointestinal(GI)cancer patients,119 lung cancer patients and 54 head and neck cancer(HNC)patients]receiving first-line chemotherapy at Tongji Hospital.The patients’changes in body weight,body mass index(BMI),and biochemical parameters(serum haemoglobin and albumin levels)were compared before and after two chemotherapy cycles.Results More than half[54.88%(163/297)]of the patients had experienced unintentional weight loss in the 6 months before chemotherapy,and weight loss≥5%and≥10%of the body mass was noted in 35.69%and 20.20%of the patients,respectively.After two cycles of platinum-based chemotherapy,the proportions of patients with a>5%reduction in body weight among patients with GI,lung,and head and neck cancers were 47.5%(59/124),44.53%(53/119),and 46.2%(25/54),respectively.The patients with GI and lung cancers were more vulnerable to extreme weight loss(≥10%)than those with HNC(P=0.025).The serum hemoglobin levels were also remarkably decreased relative to those before chemotherapy(all P<0.05).Common GI symptoms reported by all patients included anorexia(61.28%),vomiting(52.53%),and nausea(51.18%).A higher proportion of patients with≥10%weight loss experienced anorexia and vomiting(OR=12.21 and 3.61,P=0.008 and 0.047,respectively).Conclusions For advanced cancer patients receiving platinum-based chemotherapy,the GI symptoms are the major factor related to their nutritional status.Appropriate nutritional screening,evaluation and treatment should be applied during the treatment of cancer in order to reduce GI symptoms and improve the patient’s nutritional status.
文摘Cisplatin resistance still remains a major obstacle to successful treatment of cancer.The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum concentrations.In some models,this reduction is due to abnormal membrane protein trafficking,resulting in reduced uptake by transporters at the cell surface.Given the central role of platinum drugs in the clinic.
基金The national SME technology innovation fund(11C26215305898)Kunming SME technology innovation fund(CJ2011040)
文摘The residual metal impurities in cisplatin, carboplatin and oxaliplatin were determined by ICP-AES. The samples were ignited and dissolved with HCl:HNO 3 (3:1). The method is simple and accurate. By the determination of the metal residues in the samples, the calculated actual daily exposure and concentration of the metal Pd, Ir, Rh, Ru, Mo, Ni, Cr, V, Cu, Mn, Fe and Zn that were less than the permitted daily exposures (PDE) and the limited concentration permitted in the EMEA guideline on the specification limits for residues of metal catalysts or metal reagents [1] . The metal residues can de adequately removed from the active pharmaceutical ingredients and the corresponding drugs. The trace metal residues will not affect human health and lead to the safety hazard by the intravenous injection.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金Supported by a grant from the National Nature Sciences Foundation of China (No. 20671064)
文摘Objective:The aim of our study was to evaluate the in vitro antitumor activity of two novel platinum-based(II) complexes(2.3-pyridinedicarboxylic acid dehydrate platinum and 2.3-pyrazinedicarboxylic acid dehydrate platinum),which were concurrently provided with hydrophilic carboxyl group and lipophilic pyrazinyl or pyridyl group,on SW620 colorectal cancer cell line and the impact of the two compounds on the cell cycle and apoptosis of the cells when compared with the oxaliplatin,desiring the new ligand combined with hydrophilic and lipophilic properties would facilitate the transportation and transmembrane of the drugs,showing a better antitumor activity.Methods:After SW620 cells were treated with different doses of the three platinum-based agents for 24,48 and 72 h,the cell proliferation inhibition rate was determined using methyl thiazolyl tetrazolium(MTT) assay;the morphology of cells were evaluated under inverted microscope;the changes in cell cycle were determined using flow cytometry;the percent apoptosis was measured using Annexin V/PI double staining and the micromorphology of the cells after drug exposure was evaluated using scanning electron microscopy.Results:The evaluation on the proliferation inhibition rate revealed that the three platinum-based agents inhibited the SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Under optical microscope,the morphological changes such as cell shrinkage,round cells and dead cells were frequently observed after drug exposure.Cell cycle determination showed that all of the three agents could function to block the cells converting from phase S to phase G2M.Apoptosis evaluation revealed that the three agents promoted the apoptosis of SW620 cells in a time-and dose-dependent manner and showed different strengths as pyridine > pyrazine > Oxa.Typical early and late apoptotic morphological changes could be detected during electron microscopy.Conclusion:The two novel platinum-based(II) complexes showed a stronger antitumor effect on SW620 cells than oxaliplatin,with the targeted site at a certain phase of cell cycle and apoptosis.
文摘In the past decade,the advent of the epidermal growth factor receptor-tyrosine kinase inhibitors(EGFR-TKIs)has dramatically influenced the therapeutic strategies for treating lung cancer,but with tumor progression and drug resistance,patients will ultimately develop reduced sensitivity to EGFR-TKIs.How can we delay the emergence of drug resistance? What is the next strategy after drug resistance? How to reasonably combine platinum-based chemotherapy and EGFR-TKIs? These questions are currently the focus of lung cancer research.Clinical studies have reported that platinum-based chemotherapy can increase the sensitivity to EGFR-TKIs.However,results of pre-clinical and clinical studies have been inconsistent.The mechanisms of platinum chemotherapy and EGFR-TKIs are still unknown due to the lack of systematic research.Therefore,systematic studies are required to show the mechanisms of EGFR-TKIs and chemotherapy agents and define the markers sensitive to their combinations when given concurrently or sequentially.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.