In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 m...In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 mg·L^(-1),the cobalt coating transformed from disordered large grains to a honeycomb structure,with a preferred orientation of(002)facet on hexago-nal close-packed(HCP)cobalt crystals.The resistivity of the cobalt film decreased to 14.4μΩ·cm,and further decreased to 10.7μΩ·cm after the annealing treatment.When the concentration of saccharin was increased,the grain size was gradually refined and a“stone forest”structure was observed,with the preferred orientation remaining unchanged.The addition of saccharin also slightly improves the purity of cobalt coating to a certain extent.Through the study of the crystallization behavior of cobalt electroless plating,saccharin molecules can adsorb to specific c-sites on the cobalt dense crystal plane,inhibiting the growth of abc stacking arrangement and inducing the crystal growth in ab stacking mode,thereby achieving optimal growth of HCP(002)texture.展开更多
Lithium plating is a detrimental phenomenon in lithium-ion cells that compromises both functionality and safety.This study investigates electro-chemo-mechanical behaviors of lithium plating in lithium iron phosphate p...Lithium plating is a detrimental phenomenon in lithium-ion cells that compromises both functionality and safety.This study investigates electro-chemo-mechanical behaviors of lithium plating in lithium iron phosphate pouch cells under different external pressures.Atomic force microscopy nanoindentation is performed on the graphite electrode to analyze the influence of external pressure on solid-electrolyte interphase(SEI),revealing that the mechanical strength of SEI,indicated by Young's modulus,increases with the presence of external pressure.Then,an improved phase field model for lithium plating is developed by incorporating electrochemical parameterization based on nonequilibrium thermodynamics.The results demonstrate that higher pressure promotes lateral lithium deposition,covering a larger area of SEI.Moreover,electrochemical impedance spectroscopy and thickness measurements of the pouch cells are conducted during overcharge,showing that external pressure suppresses gas generation and thus increases the proportion of lithium deposition among galvanostatic overcharge reactions.By integrating experimental results with numerical simulations,it is demonstrated that moderate pressure mitigates SEI damage during lithium plating,while both insufficient and excessive pressure may exacerbate it.This study offers new insights into optimizing the design and operation of lithium iron phosphate pouch cells under external pressures.展开更多
Herein,the Cu(Ⅲ)synthesized from copper plating effluent was developed for the first time to evaluate the onsite degradation performance of heavy metal complexes in the wastewater,thus achieving the purpose of“treat...Herein,the Cu(Ⅲ)synthesized from copper plating effluent was developed for the first time to evaluate the onsite degradation performance of heavy metal complexes in the wastewater,thus achieving the purpose of“treating waste with waste”.The results indicated that synthetic Cu(Ⅲ)presented the excellent decomplexation performance for Cu(Ⅱ)/Ni(Ⅱ)-organic complexes.The removal efficiency of Cu(Ⅱ)/Ni(Ⅱ)-EDTA significantly increased with increasing Cu(Ⅲ)dosage,and the degradation of Cu(Ⅱ)/Ni(Ⅱ)-EDTA by synthetic Cu(Ⅲ)system displayed highly p H-dependent reactivity.The radical quencher experiments confirmed that Cu(Ⅲ)direct oxidation were mainly involved in the degradation of Cu(Ⅱ)-EDTA.Additionally,the continuous decarboxylation process was proven to be the main degradation pathway of Cu(Ⅱ)-EDTA in Cu(Ⅲ)system.The coexisting substances(SO42-,Cl-and fulvic acids)showed little impacts at low level for the removal of Cu(Ⅱ)/Ni(Ⅱ)-EDTA,while retarded the degradation of Cu(Ⅱ)-EDTA slightly at high level,which features high selective oxidation.Encouragingly,it was also effective to remove Cu(Ⅱ)/Ni(Ⅱ)-EDTA from in treating actual Cu/Ni-containing wastewater through synthetic Cu(Ⅲ)treatment.展开更多
Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection met...Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection methods during manufacturing is critical yet challenging.This study introduces a deep learning-based method for detecting lithium-plating-type defects using formation and capacity grading data,enabling accurate identification of defective batteries without additional equipment.First,lithiumplating-type defect batteries with various types and area ratios are fabricated.Formation and capacity grading data from 154 batteries(48 defective,106 normal)are collected to construct a dataset.Subsequently,a dual-task deep learning model is then developed,where the reconstruction task learns latent representations from the features,while the classification task identifies the defective batteries.Shapley value analysis further quantifies feature importance,revealing that defective batteries exhibit reduced coulombic efficiency(attributed to irreversible lithium loss)and elevated open-circuit voltage/K-values(linked to self-equalization effects).These findings align with the electrochemical mechanisms of lithium plating,enhancing the model's interpretability.Validated on statistically robust samples shows that the framework achieves a recall of 97.14%for defective batteries and an overall accuracy of 97.42%.This deep learning-driven solution provides a scalable and cost-effective quality control strategy for battery manufacturing.展开更多
A novel method based on mid-frequency vibration is proposed to eliminate coating defects such as bubbles during electroless nickel plating.An automated control system for the plating,enabling precise and stable measur...A novel method based on mid-frequency vibration is proposed to eliminate coating defects such as bubbles during electroless nickel plating.An automated control system for the plating,enabling precise and stable measurements and adjustments of critical parameters such as plating solution temperature,pH,and nickel ion concentration,is also established,which significantly improves process efficiency and coating quality.Experimental results indicate that the system is capable of realizing stable operation over extended periods.A nonporous nickel-phosphorus coating with a thickness greater than 200μm is successfully obtained,with high phosphorus content,robust adhesion,and superior machinability.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiop...ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.展开更多
Clavicle fractures are among the most prevalent types of fractures with numerous treatment strategies that have evolved over time.In the realm of lateral-third clavicle fracture management,several surgical methods are...Clavicle fractures are among the most prevalent types of fractures with numerous treatment strategies that have evolved over time.In the realm of lateral-third clavicle fracture management,several surgical methods are available,with plate and screw constructs being one of the most frequently employed options.Within this construct,numerous choices exist for fixing the fracture.This editorial provides an overview of the common plate options utilized in the management of distal third clavicle fractures underscoring the critical considerations and approaches that guide clinicians in selecting the most appropriate fixation techniques,considering the complex landscape of clavicle fractures and their challenging management.展开更多
Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on th...Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.展开更多
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti...The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.展开更多
The commercial utilization of Zn metal anodes with high plating capacity is significantly hindered by the uncontrolled growth of dendrites and associated side reactions.Herein,a robust artificial ion-sieving MXene fla...The commercial utilization of Zn metal anodes with high plating capacity is significantly hindered by the uncontrolled growth of dendrites and associated side reactions.Herein,a robust artificial ion-sieving MXene flake(MXF)-coating layer,with abundant polar terminated groups,is constructed to regulate the interfacial Zn^(2+)deposition behavior.In particular,the fragmented MXF coupled with in situ generated quantum dots not only has strong Zn affinity to homogenize electric fields but also generates numerous zincophilic sites to reduce nucleation energy,thus securing a uniform dendrite-free surface.Additionally,the porous coating layer with polar groups allows the downward diffusion of Zn^(2+)to achieve bottom-up deposition and repels the excessive free water and anions to prevent parasitic reactions.The ion-sieving effect of MXF is firmly verified in symmetric cells with high areal capacity of 10-40 mAh cm^(−2)(1.0 mA cm^(−2))and depth of discharge of 15%-60%.Therefore,the functional MXF-coated anode manifests long-term cycling with 2700 h of stable plating/stripping in Zn||Zn cell.Such rational design of MXF protective layer breaks new ground in developing high plating capacity zinc anodes for practical applications.展开更多
Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is...Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is a major problem in this part of the world. This non-union is a major treatment challenge with increased cost of care and morbidity in this part of the world. Humeral shaft non-union can be treated with locked intra-medullary nailing (LIMN) or dynamic compression plating (DCP). Study on comparison of these methods of fixation in this part of the world is scarce in literature search, hence the reason for this study. Objective: The objectives of this study are: (1) to compare early clinical outcome following fixation of humeral shaft fracture nonunion with DCP versus LIMN;(2) to compare the time of radiologic fracture union of DCP with LIMN;(3) to compare complications following fixation of humeral shaft fracture nonunion with DCP versus LIMN. Patients and Methods: This was a randomized control study done for 2 years in which fifty adult patients with humeral shaft non-union were recruited. The patients were grouped into 2 (P = DCP & N = LIMN). Forty five of the patients completed the follow up periods of the study and then analyzed. The P group had ORIF with DCP while the N group had ORIF with LIMN. Both groups had grafting with cancellous bones. Each patient was followed up for a period of 6 months at the time which radiographic union is expected. Any patient without clinical and/or radiographic evidence of union after six months of surgery was diagnosed as having recurrent non-union. The data generated was analyzed using SPSS Version 23. The results were presented in charts and tables. The paired t-test was used while considering p value Result: Forty five patients completed follow up. There was a male preponderance (4:1), right humerus predominated (3:2). Motor vehicular accidents were the commonest cause of the fractures (62%). Most non-union fractures occurred at the level of the middle 3<sup>rd</sup> of the humeral shaft (60%). Failed TBS treatment was the commonest indication for the osteosynthesis (71%). More patients had plating (53%) compared to 47% who had LIMN. Most patients (93.4%) had union between 3 to 6 months irrespective of fixation type with no significant statistical difference between the union rate of DCP and LIMN (p value 0.06) with similar functional outcome and complication rates irrespective of the type of fixation. Conclusion: This study showed that the success rates in term of fracture union, outcome functional grades and complication rates were not directly dependent on the types of the fixation: plating or locked intra-medullary nailing.展开更多
TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. Th...TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
A method of electroless plating is utilized to deposit Co-Fe alloy on the surface of multi-walled carbon nanotubes (MWCNTs),and electromagnetic parameters of MWCNTs with and without electroless plating are discussed...A method of electroless plating is utilized to deposit Co-Fe alloy on the surface of multi-walled carbon nanotubes (MWCNTs),and electromagnetic parameters of MWCNTs with and without electroless plating are discussed. The MWCNTs covered by Co-Fe is a desirable light absorbent in wide wave band by utilizing electroless plating process in experiments. Field-emission scanning electron microscope (FESEM) and field-emission transmission electron microscope (FETEM) images as well as energy dispersive spectroscopy (EDS) results are presented to show the morphology,components and electromagnetic parameters of MWCNTs. Electromagnetic properties of MWCNTs are enhanced after electroless plating observed from contrast of results be-tween MWCNTs with and without plating. In conclusion,the covering Co-Fe on the surface of MWCNTs in 2-18 GHz frequency range has better electromagnetic properties. When the material is in the 6.5 GHz electromagnetic waves,the reflection loss is up to -10 dB,and the bandwidth more than -4 dB is 5 GHz. The excellent electromagnetic properties make it probable for MWCNTs to be utilized as absorbent in electromagnetic shielding materials.展开更多
An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkali...An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.展开更多
A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fractu...A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fracture surface of Al/Cu joints were studied by scanning electron microscopy(SEM) and X-ray diffraction(XRD).The mechanical properties of the Al/Cu bimetals were measured by tensile shear and microhardness tests.The results show that the Ni interiayer can effectively eliminate the formation of Al-Cu intermetallic compounds.The Al/Ni interface consists of the Al3Ni and Al3Ni2 phases,while it is Ni-Cu solid solution at the Ni/Cu interce.The tensile shear strength of the joints is improved by the addition of Ni interiayer.The joint with Ni interiayer annealed at 500 ℃ exhibits a maximum value of tensile shear strength of 34.7 MPa.展开更多
The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium a...The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.展开更多
Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coate...Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coated layers were observed under a metallographic microscope.The effects of pretreatment sequence,pH value of EN plating solution and current density of electroplating on the performance of the metal-coated layers were analyzed.Meanwhile, the Bragg wavelength shift induced by temperature was monitored by an optical spectrum analyzer.Sensitivity of the metal-coated FBG(MFBG)sensor was almost two times that of normal bare FBG sensor.The measuring temperature of the MFBG sensor could be up to 280℃,which was much better than that of conventional FBG sensor.展开更多
基金supported by National Natural Science Foundation of China(22402115,22472094)Shaanxi Special Fund for Talent Introduction(100090/1204071055).
文摘In the process of electroless cobalt plating,the saccharin additive can significantly change the surface morphology,texture orientation,and conductivity of the cobalt coating layer.When the amount of saccharin was 3 mg·L^(-1),the cobalt coating transformed from disordered large grains to a honeycomb structure,with a preferred orientation of(002)facet on hexago-nal close-packed(HCP)cobalt crystals.The resistivity of the cobalt film decreased to 14.4μΩ·cm,and further decreased to 10.7μΩ·cm after the annealing treatment.When the concentration of saccharin was increased,the grain size was gradually refined and a“stone forest”structure was observed,with the preferred orientation remaining unchanged.The addition of saccharin also slightly improves the purity of cobalt coating to a certain extent.Through the study of the crystallization behavior of cobalt electroless plating,saccharin molecules can adsorb to specific c-sites on the cobalt dense crystal plane,inhibiting the growth of abc stacking arrangement and inducing the crystal growth in ab stacking mode,thereby achieving optimal growth of HCP(002)texture.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2503800)。
文摘Lithium plating is a detrimental phenomenon in lithium-ion cells that compromises both functionality and safety.This study investigates electro-chemo-mechanical behaviors of lithium plating in lithium iron phosphate pouch cells under different external pressures.Atomic force microscopy nanoindentation is performed on the graphite electrode to analyze the influence of external pressure on solid-electrolyte interphase(SEI),revealing that the mechanical strength of SEI,indicated by Young's modulus,increases with the presence of external pressure.Then,an improved phase field model for lithium plating is developed by incorporating electrochemical parameterization based on nonequilibrium thermodynamics.The results demonstrate that higher pressure promotes lateral lithium deposition,covering a larger area of SEI.Moreover,electrochemical impedance spectroscopy and thickness measurements of the pouch cells are conducted during overcharge,showing that external pressure suppresses gas generation and thus increases the proportion of lithium deposition among galvanostatic overcharge reactions.By integrating experimental results with numerical simulations,it is demonstrated that moderate pressure mitigates SEI damage during lithium plating,while both insufficient and excessive pressure may exacerbate it.This study offers new insights into optimizing the design and operation of lithium iron phosphate pouch cells under external pressures.
基金supported by National Natural Science Foundation of China(Nos.52170092,U22A20403 and 51808406)Hebei Natural Science Foundation(Nos.E2021203140 and B2021203016)。
文摘Herein,the Cu(Ⅲ)synthesized from copper plating effluent was developed for the first time to evaluate the onsite degradation performance of heavy metal complexes in the wastewater,thus achieving the purpose of“treating waste with waste”.The results indicated that synthetic Cu(Ⅲ)presented the excellent decomplexation performance for Cu(Ⅱ)/Ni(Ⅱ)-organic complexes.The removal efficiency of Cu(Ⅱ)/Ni(Ⅱ)-EDTA significantly increased with increasing Cu(Ⅲ)dosage,and the degradation of Cu(Ⅱ)/Ni(Ⅱ)-EDTA by synthetic Cu(Ⅲ)system displayed highly p H-dependent reactivity.The radical quencher experiments confirmed that Cu(Ⅲ)direct oxidation were mainly involved in the degradation of Cu(Ⅱ)-EDTA.Additionally,the continuous decarboxylation process was proven to be the main degradation pathway of Cu(Ⅱ)-EDTA in Cu(Ⅲ)system.The coexisting substances(SO42-,Cl-and fulvic acids)showed little impacts at low level for the removal of Cu(Ⅱ)/Ni(Ⅱ)-EDTA,while retarded the degradation of Cu(Ⅱ)-EDTA slightly at high level,which features high selective oxidation.Encouragingly,it was also effective to remove Cu(Ⅱ)/Ni(Ⅱ)-EDTA from in treating actual Cu/Ni-containing wastewater through synthetic Cu(Ⅲ)treatment.
基金supported by the National Natural Science Foundation of China(NSFC,52277223 and 51977131)the Shanghai Pujiang Programme(23PJD062)。
文摘Lithium-plating-type defects in lithium-ion batteries pose severe safety risks due to their potential to trigger thermal runaway.To prevent defective batteries from entering the market,developing in-line detection methods during manufacturing is critical yet challenging.This study introduces a deep learning-based method for detecting lithium-plating-type defects using formation and capacity grading data,enabling accurate identification of defective batteries without additional equipment.First,lithiumplating-type defect batteries with various types and area ratios are fabricated.Formation and capacity grading data from 154 batteries(48 defective,106 normal)are collected to construct a dataset.Subsequently,a dual-task deep learning model is then developed,where the reconstruction task learns latent representations from the features,while the classification task identifies the defective batteries.Shapley value analysis further quantifies feature importance,revealing that defective batteries exhibit reduced coulombic efficiency(attributed to irreversible lithium loss)and elevated open-circuit voltage/K-values(linked to self-equalization effects).These findings align with the electrochemical mechanisms of lithium plating,enhancing the model's interpretability.Validated on statistically robust samples shows that the framework achieves a recall of 97.14%for defective batteries and an overall accuracy of 97.42%.This deep learning-driven solution provides a scalable and cost-effective quality control strategy for battery manufacturing.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB3407200)the National Natural Science Foundation of China(Grant Nos.52375462 and 52035009).
文摘A novel method based on mid-frequency vibration is proposed to eliminate coating defects such as bubbles during electroless nickel plating.An automated control system for the plating,enabling precise and stable measurements and adjustments of critical parameters such as plating solution temperature,pH,and nickel ion concentration,is also established,which significantly improves process efficiency and coating quality.Experimental results indicate that the system is capable of realizing stable operation over extended periods.A nonporous nickel-phosphorus coating with a thickness greater than 200μm is successfully obtained,with high phosphorus content,robust adhesion,and superior machinability.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金supported by the National Key Research and Development Program of China(2021YFB2400202)the National Natural Science Foundation of China(52104313)+1 种基金the Key Research and Development Plan of Shaanxi(2024GH-YBXM-11)the Foshan Science and Technology Innovation Team Project(1920001004098).
文摘ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.
文摘Clavicle fractures are among the most prevalent types of fractures with numerous treatment strategies that have evolved over time.In the realm of lateral-third clavicle fracture management,several surgical methods are available,with plate and screw constructs being one of the most frequently employed options.Within this construct,numerous choices exist for fixing the fracture.This editorial provides an overview of the common plate options utilized in the management of distal third clavicle fractures underscoring the critical considerations and approaches that guide clinicians in selecting the most appropriate fixation techniques,considering the complex landscape of clavicle fractures and their challenging management.
基金supported by the National Natural Scientific Foundation of China (22109083,22379014)Beijing Natural Science Foundation (L233004)。
文摘Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.
基金Project(5227010679)supported by the National Natural Science Foundation of China。
文摘The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film.
基金Hong Kong Polytechnic University,Grant/Award Number:1-WZ1Y。
文摘The commercial utilization of Zn metal anodes with high plating capacity is significantly hindered by the uncontrolled growth of dendrites and associated side reactions.Herein,a robust artificial ion-sieving MXene flake(MXF)-coating layer,with abundant polar terminated groups,is constructed to regulate the interfacial Zn^(2+)deposition behavior.In particular,the fragmented MXF coupled with in situ generated quantum dots not only has strong Zn affinity to homogenize electric fields but also generates numerous zincophilic sites to reduce nucleation energy,thus securing a uniform dendrite-free surface.Additionally,the porous coating layer with polar groups allows the downward diffusion of Zn^(2+)to achieve bottom-up deposition and repels the excessive free water and anions to prevent parasitic reactions.The ion-sieving effect of MXF is firmly verified in symmetric cells with high areal capacity of 10-40 mAh cm^(−2)(1.0 mA cm^(−2))and depth of discharge of 15%-60%.Therefore,the functional MXF-coated anode manifests long-term cycling with 2700 h of stable plating/stripping in Zn||Zn cell.Such rational design of MXF protective layer breaks new ground in developing high plating capacity zinc anodes for practical applications.
文摘Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is a major problem in this part of the world. This non-union is a major treatment challenge with increased cost of care and morbidity in this part of the world. Humeral shaft non-union can be treated with locked intra-medullary nailing (LIMN) or dynamic compression plating (DCP). Study on comparison of these methods of fixation in this part of the world is scarce in literature search, hence the reason for this study. Objective: The objectives of this study are: (1) to compare early clinical outcome following fixation of humeral shaft fracture nonunion with DCP versus LIMN;(2) to compare the time of radiologic fracture union of DCP with LIMN;(3) to compare complications following fixation of humeral shaft fracture nonunion with DCP versus LIMN. Patients and Methods: This was a randomized control study done for 2 years in which fifty adult patients with humeral shaft non-union were recruited. The patients were grouped into 2 (P = DCP & N = LIMN). Forty five of the patients completed the follow up periods of the study and then analyzed. The P group had ORIF with DCP while the N group had ORIF with LIMN. Both groups had grafting with cancellous bones. Each patient was followed up for a period of 6 months at the time which radiographic union is expected. Any patient without clinical and/or radiographic evidence of union after six months of surgery was diagnosed as having recurrent non-union. The data generated was analyzed using SPSS Version 23. The results were presented in charts and tables. The paired t-test was used while considering p value Result: Forty five patients completed follow up. There was a male preponderance (4:1), right humerus predominated (3:2). Motor vehicular accidents were the commonest cause of the fractures (62%). Most non-union fractures occurred at the level of the middle 3<sup>rd</sup> of the humeral shaft (60%). Failed TBS treatment was the commonest indication for the osteosynthesis (71%). More patients had plating (53%) compared to 47% who had LIMN. Most patients (93.4%) had union between 3 to 6 months irrespective of fixation type with no significant statistical difference between the union rate of DCP and LIMN (p value 0.06) with similar functional outcome and complication rates irrespective of the type of fixation. Conclusion: This study showed that the success rates in term of fracture union, outcome functional grades and complication rates were not directly dependent on the types of the fixation: plating or locked intra-medullary nailing.
基金Projects (50773015, 10775036) supported by the National Natural Science Foundation of China
文摘TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
文摘A method of electroless plating is utilized to deposit Co-Fe alloy on the surface of multi-walled carbon nanotubes (MWCNTs),and electromagnetic parameters of MWCNTs with and without electroless plating are discussed. The MWCNTs covered by Co-Fe is a desirable light absorbent in wide wave band by utilizing electroless plating process in experiments. Field-emission scanning electron microscope (FESEM) and field-emission transmission electron microscope (FETEM) images as well as energy dispersive spectroscopy (EDS) results are presented to show the morphology,components and electromagnetic parameters of MWCNTs. Electromagnetic properties of MWCNTs are enhanced after electroless plating observed from contrast of results be-tween MWCNTs with and without plating. In conclusion,the covering Co-Fe on the surface of MWCNTs in 2-18 GHz frequency range has better electromagnetic properties. When the material is in the 6.5 GHz electromagnetic waves,the reflection loss is up to -10 dB,and the bandwidth more than -4 dB is 5 GHz. The excellent electromagnetic properties make it probable for MWCNTs to be utilized as absorbent in electromagnetic shielding materials.
基金Project(20120407)supported by the Science and Technology Key Development Plan of Jilin Province,China
文摘An electroless ternary Ni-Sn-P transition layer with high corrosion resistance was applied for acid electroless nickel plating on magnesium alloys. The surface morphologies and microstructure of the traditional alkaline electroless Ni-P and novel Ni-Sn-P transition layers were compared by SEM and XRD, and the bonding strengths between the transition layers and AZ31 magnesium alloys were tested. The corrosion resistance of the samples was analyzed by porosity test, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) in acid electroless solution at p H 4.5 and immersion test in 10% HCl. The results indicate that the transition layer is essential for acid electroless plating Ni-P coatings on magnesium alloys. Under the same thin thickness(-6 μm), the electroless Ni-Sn-P transition layer possesses superior properties to the traditional Ni-P transition layer, including high amorphization, smooth and dense surface without pores, enhanced bonding strength and corrosion resistance. Most importantly, acid electroless Ni-P coatings can be successfully deposited on magnesium alloys by using Ni-Sn-P transition layer.
基金Projects (51274054,51375070,51271042) supported by the National Natural Science Foundation of ChinaProjects (2013M530913) supported by the China Postdoctoral Science Foundation
文摘A nickel-based coating was deposited on the pure Al substrate by immersion plating,and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450-550 ℃.The interce microstructure and fracture surface of Al/Cu joints were studied by scanning electron microscopy(SEM) and X-ray diffraction(XRD).The mechanical properties of the Al/Cu bimetals were measured by tensile shear and microhardness tests.The results show that the Ni interiayer can effectively eliminate the formation of Al-Cu intermetallic compounds.The Al/Ni interface consists of the Al3Ni and Al3Ni2 phases,while it is Ni-Cu solid solution at the Ni/Cu interce.The tensile shear strength of the joints is improved by the addition of Ni interiayer.The joint with Ni interiayer annealed at 500 ℃ exhibits a maximum value of tensile shear strength of 34.7 MPa.
基金Supported by the National Hi-Tech Research and Development Program of China(863 Program)(Grant No .2006 AA04Z311)K.C.Wong Education Foundation,Hong Kong
文摘The current research processes of electroplating and electroless Ni-P alloy plating on magnesium alloys were reviewed. Theoretically,the reason for difficulties in electroplating and electroless plating on magnesium alloys was given.The zinc immersion, copper immersion,direct electroless Ni-P alloy plating and electroplating and electroless plating on magnesium alloys prepared by chemical conversion coating were presented in detail.Especially,the research development of magnesium alloy AZ91 and AZ31 was discussed briefly.Based on the analysis,the existing problems and future research directions were then given.
基金the National Natural Science Foundation of China(No.60777038).
文摘Metal-coated fiber Bragg grating(FBG)temperature sensors were prepared via electroless nickel(EN)plating and tin electroplating methods on the surface of normal bare FBG.The surface morphologies of the metal-coated layers were observed under a metallographic microscope.The effects of pretreatment sequence,pH value of EN plating solution and current density of electroplating on the performance of the metal-coated layers were analyzed.Meanwhile, the Bragg wavelength shift induced by temperature was monitored by an optical spectrum analyzer.Sensitivity of the metal-coated FBG(MFBG)sensor was almost two times that of normal bare FBG sensor.The measuring temperature of the MFBG sensor could be up to 280℃,which was much better than that of conventional FBG sensor.