Heterointerfaces have been pivotal in unveiling extraordinary interfacial properties and enabling multifunctional material platforms.Despite extensive research on all-oxide interfaces,heterointerfaces between differen...Heterointerfaces have been pivotal in unveiling extraordinary interfacial properties and enabling multifunctional material platforms.Despite extensive research on all-oxide interfaces,heterointerfaces between different material classes,such as oxides and nitrides,remain underexplored.Here we present the fabrication of atomically sharp heterointerfaces between antiperovskite Ni_(3)InN and perovskite SrVO_(3).Leveraging layer-resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we identified pronounced charge transfer across the well-ordered interface.First-principles calculations confirmed our experimental observations and further predicted an emergent magnetic moment within the Ni_(3)InN layer due to the charge transfer.These findings pave the way for novel electronic and spintronic applications by enabling tunable interfacial properties in nitride/oxide systems.展开更多
基金supported by the Beijing Natural Science Foundation(Grant No.JQ24002)the National Key Basic Research Program of China(Grant No.2020YFA0309100)+3 种基金the National Natural Science Foundation of China(Grant Nos.U22A20263,52250308,12304158,12325401,12274069,12404102,and 12474096)the Chinese Academy of Sciences(CAS)Project for Young Scientists in Basic Research(Grant No.YSBR-084)the CAS Youth Interdisciplinary Team,the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120014)the Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology,and the International Young Scientist Fellowship of Institute of Physics,CAS.
文摘Heterointerfaces have been pivotal in unveiling extraordinary interfacial properties and enabling multifunctional material platforms.Despite extensive research on all-oxide interfaces,heterointerfaces between different material classes,such as oxides and nitrides,remain underexplored.Here we present the fabrication of atomically sharp heterointerfaces between antiperovskite Ni_(3)InN and perovskite SrVO_(3).Leveraging layer-resolved scanning transmission electron microscopy and electron energy loss spectroscopy,we identified pronounced charge transfer across the well-ordered interface.First-principles calculations confirmed our experimental observations and further predicted an emergent magnetic moment within the Ni_(3)InN layer due to the charge transfer.These findings pave the way for novel electronic and spintronic applications by enabling tunable interfacial properties in nitride/oxide systems.