Overall wave loading and local hydrodynamic pressure distributions on a platform mat in regular waves for shallow waters are experimentally investigated in order to examine the severity of the nonlinear effects and sh...Overall wave loading and local hydrodynamic pressure distributions on a platform mat in regular waves for shallow waters are experimentally investigated in order to examine the severity of the nonlinear effects and shallow water effects. Wave focusing phenomenon is observed in the tests. The measured results may also provide a comparison basis for the theoretical development to consider the nonlinear interaction between waves and viscous flow by introducing viscosity into wave theories.展开更多
- In this paper, an engineering method is employed to calculate the horizontal and vertical wave forces on the mat of the submersible platform under Froude-Krylov hypothesis. According to some model tests, appropriate...- In this paper, an engineering method is employed to calculate the horizontal and vertical wave forces on the mat of the submersible platform under Froude-Krylov hypothesis. According to some model tests, appropriate diffraction coefficients are selected. And the results of the formulae given in the paper agree satisfactorily with those experimental data now available. The proposed computational method is effective and convenient to use in evaluating the horizontal and vertical wave forces on the mat. An exmaple is also given in this paper. Finally, the effects of the vertical wave force on the platorm's sit-on-bottom stability are analyzed.展开更多
The Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) consists mainly of dark-gray to black shales that are widespread in the North China Platform. Abundant centimeter-scale sand veins are present within the shale l...The Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) consists mainly of dark-gray to black shales that are widespread in the North China Platform. Abundant centimeter-scale sand veins are present within the shale layers of this unit, particularly in the middle part. Sand veins display ptygmatic shapes, perpendicular or with a high angle to bedding planes. They penetrate the black shale layers but are often terminated by thin, lenticular sandstone beds, forming small-scale ‘tepee-like’ structures. On bedding planes, sand veins are expressed as small ridges with 1–3 mm positive relief. Lack of polygonal shapes and their occurrence in thinly laminated, relatively deep-water shales preclude an origin from sand-filled desiccation cracks. Instead, their close association with microbially induced sedimentary structures (MISS) such as micro-wrinkles and gas blisters, putative bacterial fossils (possibly coccoidal cyanobacteria) and framboidal pyrites, suggests that they were formed by degassing of methane from microbial mat decay. Methane gas disrupted overlying sedimentary layers, creating fractures open to seawater. Fine-grained quartz sands, which were transported into the depositional environment by strong winds, filled the fractures. Sand-filled fractures were shortened and folded during burial compaction, forming ptygmatic shapes. The presence of dispersed dolomite and siderite in these sand veins suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM). Sand veins are intensely distributed within the Chuanlinggou Formation and are spatially widespread in the North China Platform. If their methane origin is confirmed, they may have important implications for the Mesoproterozoic paleoclimate. With anoxic oceans and low seawater sulfate concentration during the Mesoproterozoic, methane release from microbial mat decay and/or microbial methanogenesis during shallow burial may have been proportionally higher than that of the modern marine environments, with resultant increase in the relative importance of methane in maintaining the Mesoproterozoic greenhouse climate.展开更多
基金The project was financially supported by the Foundation of Doctorate Program of the State Education Commission of China
文摘Overall wave loading and local hydrodynamic pressure distributions on a platform mat in regular waves for shallow waters are experimentally investigated in order to examine the severity of the nonlinear effects and shallow water effects. Wave focusing phenomenon is observed in the tests. The measured results may also provide a comparison basis for the theoretical development to consider the nonlinear interaction between waves and viscous flow by introducing viscosity into wave theories.
文摘- In this paper, an engineering method is employed to calculate the horizontal and vertical wave forces on the mat of the submersible platform under Froude-Krylov hypothesis. According to some model tests, appropriate diffraction coefficients are selected. And the results of the formulae given in the paper agree satisfactorily with those experimental data now available. The proposed computational method is effective and convenient to use in evaluating the horizontal and vertical wave forces on the mat. An exmaple is also given in this paper. Finally, the effects of the vertical wave force on the platorm's sit-on-bottom stability are analyzed.
基金the MOE Innovative Research Team Program (Grant No. IRT0546)the National Natural Science Foundation of China (Grant No. 40621002)+1 种基金SINOPEC Project (Grant No. G0800-06-ZS-319)the Education Ministry of China (Grant No. B07011)
文摘The Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) consists mainly of dark-gray to black shales that are widespread in the North China Platform. Abundant centimeter-scale sand veins are present within the shale layers of this unit, particularly in the middle part. Sand veins display ptygmatic shapes, perpendicular or with a high angle to bedding planes. They penetrate the black shale layers but are often terminated by thin, lenticular sandstone beds, forming small-scale ‘tepee-like’ structures. On bedding planes, sand veins are expressed as small ridges with 1–3 mm positive relief. Lack of polygonal shapes and their occurrence in thinly laminated, relatively deep-water shales preclude an origin from sand-filled desiccation cracks. Instead, their close association with microbially induced sedimentary structures (MISS) such as micro-wrinkles and gas blisters, putative bacterial fossils (possibly coccoidal cyanobacteria) and framboidal pyrites, suggests that they were formed by degassing of methane from microbial mat decay. Methane gas disrupted overlying sedimentary layers, creating fractures open to seawater. Fine-grained quartz sands, which were transported into the depositional environment by strong winds, filled the fractures. Sand-filled fractures were shortened and folded during burial compaction, forming ptygmatic shapes. The presence of dispersed dolomite and siderite in these sand veins suggests authigenic carbonate precipitation from anaerobic oxidation of methane (AOM). Sand veins are intensely distributed within the Chuanlinggou Formation and are spatially widespread in the North China Platform. If their methane origin is confirmed, they may have important implications for the Mesoproterozoic paleoclimate. With anoxic oceans and low seawater sulfate concentration during the Mesoproterozoic, methane release from microbial mat decay and/or microbial methanogenesis during shallow burial may have been proportionally higher than that of the modern marine environments, with resultant increase in the relative importance of methane in maintaining the Mesoproterozoic greenhouse climate.