期刊文献+
共找到3,528篇文章
< 1 2 177 >
每页显示 20 50 100
Direct Production of Sorbitol-Plasticized Bioplastic Film from Gracilaria sp.
1
作者 Ahmad Faldo Labanta Marbun +6 位作者 Hezekiah Lemuel Putra Zebua Fateha Fateha Rossy Choerun Nissa Yurin Karunia Apsha Albaina Iasya Riri Uswatun Annifah Amrul Amrul Yeyen Nurhamiyah 《Journal of Polymer Materials》 2025年第3期743-755,共13页
Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red ... Conventional bioplastic production from seaweed often relies on extraction processes that are costly,time-consuming,and yield limited product.This study presents a direct fabrication method using Gracilaria sp.,a red seaweed rich in polysaccharides,to produce bioplastic films without the need for extraction.Sorbitol was incorporated as a plasticizer at concentrations of 0%–10%(w/w)to modify film characteristics.Thermal analysis revealed improved stability at moderate sorbitol levels(5%–7%),while excessive plasticizer slightly reduced thermal resistance.Mechanical testing showed that sorbitol increased film flexibility and elongation at break,though tensile strength and stiffness declined.Tear strength followed a non-linear trend,with improvement observed at higher sorbitol concentrations.Seal strength also increased,peaking at 7%,indicating stronger interfacial bonding between film layers.Biodegradation tests demonstrated accelerated decomposition with increased sorbitol content,achieving complete degradation within 30 days at 10% concentration.Color analysis showed increased brightness and reduced yellowing,enhancing the visual quality of the films.These results confirm that direct conversion of bioplastic is both feasible and effective.Sorbitol plays a key role in tuning film properties,offering a low-cost,scalable pathway to biodegradable materials suitable for environmentally friendly packaging applications. 展开更多
关键词 Gracilaria sp. BIODEGRADABILITY direct seaweed production bioplastic film plastic waste alternatives
在线阅读 下载PDF
Combustion of nitrate ester plasticized polyether propellants 被引量:6
2
作者 Xiao-ting YAN Zhi-xun XIA +1 位作者 Li-ya HUANG Xu-dong NA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第10期834-847,共14页
Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism diffe... Nitrate ester plasticized polyether(NEPE)is a kind of high-energy solid propellant that has both good mechanical properties and high specific impulse.However,its unique composition makes its combustion mechanism different from both double-base propellants and composite propellants.In order to study the combustion mechanism of NEPE propellants,we improved the free radical cracking model of previous research to make it capable of predicting the burning rate of NEPE propellants.To study the combustion characteristics and provide data support for the model,an experimental system was built and four kinds of NEPE propellants with different compositions and grain size distributions were tested.The results show that our modified model can reflect the combustion characteristics of NEPE propellants with an acceptable accuracy.The difference between the model and the experimental data is mainly caused by uncertain environmental factors and the ignorance of interactions between components.Both the experimental data and the results predicted by the model show that increasing the backpressure helps to increase the burning rate of NEPE propellants.Furthermore,the grain size of the oxidizer inside the NEPE propellant has a more severe impact on the burning rate but a lighter impact on the burning rate pressure exponent in comparison with the grain size of aluminum.For aluminum-free NEPE propellants,the reaction in the gas phase is dominant in the combustion process while adding aluminum into the propellant makes the solid phase dominant in the final stage.The combustion of fine aluminum particles near the burning surface generates heat feedback to the burning surface which evidently influences the surface temperature.However,the agglomeration of coarse aluminum particles has little effect on the burning surface temperature. 展开更多
关键词 Nitrate ester plasticized polyether(NEPE)propellant COMBUSTION Free radical model Burning rate
原文传递
CHARACTERISTICS OF CATION—CONDUCTIVE BLENDS PLASTICIZED WITH PROPYLENE CARBONATE
3
作者 Qing Zhong XU and Guo Xiang Wan Chengdu Institute of Organic Chemistry, Academia Sinica, Chengdu 610041 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第11期1011-1012,共2页
The cation—conductive blends plasticized with propylene carbonate were prepared. The blends exhibited good mechanical strength and single—cation conduction over a wide range of plasticizer composition. The plasticiz... The cation—conductive blends plasticized with propylene carbonate were prepared. The blends exhibited good mechanical strength and single—cation conduction over a wide range of plasticizer composition. The plasticizer not only increases the conductivity of the blends but also decreases the electrochemical interface resistance between the blend and lithium electrode. The carrier in the blends obviously grows in number. 展开更多
关键词 PC FIGURE CHARACTERISTICS OF CATION CONDUCTIVE BLENDS plasticized WITH PROPYLENE CARBONATE
在线阅读 下载PDF
Microcellular Foaming of Plasticized Thin PC Sheet I.Effects of Processing Conditions 被引量:2
4
作者 陈浩 管蓉 +3 位作者 ZHAO Jingzuo JIANG Shufang KE Zhao ZHA Shangwen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第2期235-242,共8页
Novel microcellular foams using thin plasticized PC sheet were prepared by compression molding. The measurement results showed that T of plasticized PC was decreased and the molecular chain mobility was increased. Dec... Novel microcellular foams using thin plasticized PC sheet were prepared by compression molding. The measurement results showed that T of plasticized PC was decreased and the molecular chain mobility was increased. Decrease in T and increase in chains mobility were contributed to the widen of foaming temperature window. Effects of processing conditions on cell size, cell density and relative density were also investigated. The experimental results show that the temperature, tributyl citrate and foaming agent content have more effects on the structures and morphology of the plasticized PC microcellular foam. Effects of experimental conditions on cell size distribution have also been discussed. 展开更多
关键词 PLASTICIZATION microcellular foam POLYCARBONATE compression molding
原文传递
Chain Dynamics Heterogeneity in Plasticized Poly(vinyl butyral)(PVB) as Elucidated by Solid-State NMR 被引量:1
5
作者 Jing Lv Xu Chen +2 位作者 Zi-Shuo Wu Ya-Hui Li Wei Chen 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第1期113-124,I0010,共13页
The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two do... The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two domains in distinct molecular dynamics differences,namely,rigid and soft domains,where the latter is the plasticizer-rich domain.The time domain low field NMR was first used to investigate the dynamics heterogeneity of the plasticized PVB,and the results show the decreasing activated energy of components in the soft domain of plasticized PVB(E_a=20.2 kJ/mol) as compared with that of the pristine one(E_a=24.3 kJ/mol).Detailed dynamics heterogeneity was obtained by high-field NMR with site-specific features.The quadrupole-echo ~2H-NMR was adopted to elucidate the dynamics heterogeneity of the vinyl alcohol(VA) units,where only the hydroxyl group of VA is deuterated.The ~1H-^(13)C WISE NMR spectra show that there is not much difference in the mobility of the VB unit in PVB with and without plasticizer,whereas the glass transition temperature differed by approximately 53℃.This is further supported by Torchia's T_1 relaxation measurements.The origin of such an unusual phenomenon is attributed to the critical role of the remaining VA(~22%) in the soft domain,where the VA units locally aggregate through hydrogen bonding.Also,the existence of a mobility gradient in the VB unit has been demonstrated.Moreover,the mobility difference for VB with different stereo-geometry(meso or racemic conformation) is observed for the first time.This indicates the importance of modulating the ratio of meso over racemic VB for controlling the macroscopic perfo rmance of PVB. 展开更多
关键词 Poly(vinyl butyral) Dynamics heterogeneity PLASTICIZER Solid state NMR
原文传递
Irradiation Effect on Photodegradation of Pure and Plasticized Poly (4-Methylstyrene) in Solid Films 被引量:1
6
作者 Saria A. Al Safi Thanaa M. Al Mouamin +1 位作者 Wadhah N. Al Sieadi Khalid E. Al Ani 《Materials Sciences and Applications》 2014年第5期300-315,共16页
The photodegradation of irradiated thin films of poly (para-methylstyrene) with 265 nm radiations in the presence of airand as a function of irradiation time has been studied using UV-VIS, fluorescence and FT-IR Spect... The photodegradation of irradiated thin films of poly (para-methylstyrene) with 265 nm radiations in the presence of airand as a function of irradiation time has been studied using UV-VIS, fluorescence and FT-IR Spectroscopic techniques. The influence of phthalate and terephthalate plasticizers on stability of poly (para-methylstyrene) towards irradiations was also investigated. Blending with phthalate plasticizers was found to cause a higher efficiency of photodegradation than that obtained in doping with terephthalate plasticizers. The intensity of absorption was also found to increase with time of irradiation and in change in the shape of the spectra at longer wavelength, thus indicating a possibility of photodegradation of polymer chains. The analysis of the FT-IR spectra of the irradiated and non-irradiated samples, shows a predominant absorption associated with carbonyl compounds with 1740 cm-1. In addition, the observed increase in the intensities of the carbonyl and hydroxyl regions of the FT-IR spectra, have provided an evidence for the photodegradation as well as photo-oxidation of polymeric chains. The presence of the plasticizer in the polymer backbone was found to accelerate the photodegradation of polymeric chains. 展开更多
关键词 EXCIMER Fluorescence PHOTODEGRADATION Kinetics PHTHALATE Plasticizers POLY (Para-Methylstyrene)
在线阅读 下载PDF
Rheological Studies on Glycerol Plasticized Gelatin and Its Blends with Epoxidized Soybean Oil
7
作者 E.M.Ciannamea L.A.Castillo +1 位作者 R.A.Ruseckaite S.E.Barbosa 《Journal of Renewable Materials》 SCIE 2019年第1期21-30,共10页
Blends of gelatin(Ge)plasticized with varying amounts of glycerol(Gly),buffer solution pH 10 and epoxidized soybean oil(ESO)to enhance hydrophobicity were prepared by mixing and injection-molding.Blends were character... Blends of gelatin(Ge)plasticized with varying amounts of glycerol(Gly),buffer solution pH 10 and epoxidized soybean oil(ESO)to enhance hydrophobicity were prepared by mixing and injection-molding.Blends were characterized by rheological tests and microscopy to select optimal conditions for scaling up their processing.The effect of each component on rheological response was analyzed using parallel plate geometry.Coating of gelatin specimens with PDMS during rheological tests led to reliable and reproducible results since water evaporation was prevented.A gradual increment in ESO concentration led to blends with increased degree of phase separation,as evidenced by optical and confocal microscopy.Limited compatibility between ESO and Ge increased viscosity at high ESO levels,but up to 10%Gly could be replaced with ESO without a significant variation of rheological behavior. 展开更多
关键词 RHEOLOGY RENEWABLE plasticizers gelatin blends microstructure
在线阅读 下载PDF
Green Chemistry of Cellulose Acetate Membrane Plasticized by Citric Acid and Succinonitrile for Lithium-Ion Battery Application
8
作者 Christin Rina Ratri Qolby Sabrina +2 位作者 Adam Febriyanto Nugraha Sotya Astutiningsih Mochamad Chalid 《Journal of Renewable Materials》 EI CAS 2024年第11期1863-1878,共16页
Commercial lithium-ion batteries(LIBs)use polyolefins as separators.This has led to increased research on separators composed of renewable materials such as cellulose and its derivatives.In this study,the ionic conduc... Commercial lithium-ion batteries(LIBs)use polyolefins as separators.This has led to increased research on separators composed of renewable materials such as cellulose and its derivatives.In this study,the ionic conductivity of cellulose acetate(CA)polymer electrolyte membranes was enhanced via plasticization with citric acid and succinonitrile.The primary objective of this study was to evaluate the effectiveness of these plasticizers in improving cellulose-based separator membranes in LIBs.CA membranes were fabricated using solution casting technique and then plasticized with various concentrations of plasticizers.The structural,thermal,and electrochemical properties of the resulting membranes were characterized using Fourier Transform infrared(FTIR)spectroscopy,X-Ray Diffraction(XRD),Differential Scanning Calorimetry(DSC),Thermogravimetric Analysis(TGA),and Electrochemical Impedance Spectroscopy(EIS).The FTIR and XRD results confirmed the successful incorporation of citric acid and succinonitrile into the polymer matrix,while the TGA analysis demonstrated the enhanced thermal stability of the plasticized membranes.The shift in the glass transition temperature was determined by DSC analysis.Most notably,the EIS results revealed a significant increase in ionic conductivity,achieving a maximum of 2.7×10^(-5) S/cm at room temperature.This improvement was attributed to the effect of plasticizers,which facilitated the dissociation of lithium salts and increase the mobility of the lithium ions.The ionic conductivities of plasticized CA membranes are better than those of unmodified CA membranes and commercially available Celgard separator membranes:4.7×10^(-6) and 2.1×10^(-7) S/cm,respectively.These findings suggest that citric acid and succinonitrile are effective plasticizers for cellulose acetate membranes,making them promising substitutes for commercial polyolefin separators in LIB applications. 展开更多
关键词 CELLULOSE polymer electrolyte natural plasticizer citric acid SUCCINONITRILE
在线阅读 下载PDF
Study the Influence of UV-Irradiation on the Photo Stability of Pure and Plasticized Poly (4-Vinyl Biphenyl) in Solid Films
9
作者 Khalid Essa Al Ani Afrah Essa Ramadhan Suha Khanfar 《Materials Sciences and Applications》 2017年第13期1027-1052,共26页
The effect of UV irradiation and blending with phthalate and terephthalate plasticizers on the photo-stability of Poly (4-vinyl biphenyl) was studied at different intervals of irradiation time and in presence of air. ... The effect of UV irradiation and blending with phthalate and terephthalate plasticizers on the photo-stability of Poly (4-vinyl biphenyl) was studied at different intervals of irradiation time and in presence of air. The increase in irradiation time on the photodegradation of polymer thin films caused a change in the intensity and shape of the fluorescence band. It has been found that the stability of the polymer decreases with the increase of irradiation time, and to increases with the increase of the amount of added phthalate and terephthalate plasticizers, which is evidence of polymer photodegradation. The FT-IR spectra of irradiated pure and blended polymer with phthalate and terephthalate plasticizers showed a decrease in some absorption bands and increase in the other bands, this is also another factor for the occurrence of photo degradation of the irradiated polymer. The increase in the intensity of absorption of carbonyl and hydroxyl region, indicates a possible photogegradation of polymeric chains and the formation of alcohols, aliphatic ketones and to the increase in the number of (C=C) that resulted from hydrogen abstraction during chains-scission. 展开更多
关键词 EXCIMER Fluorescence Photodegradation Kinetics PHTHALATE Plasticizers POLY (4-Vinyl Biphenyl) UV-IRRADIATION
在线阅读 下载PDF
Metabolic reprogramming of astrocytes:Emerging roles of lactate 被引量:1
10
作者 Zeyu Liu Yijian Guo +2 位作者 Ying Zhang Yulei Gao Bin Ning 《Neural Regeneration Research》 2026年第2期421-432,共12页
Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications wit... Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications with metabolic reprogramming.Nonetheless,the specific mechanisms and roles of this connection in astrocytes remain unclear.Therefore,this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system.The close relationship between epigenetic modifications and metabolic reprogramming was discussed.Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases.In the nervous system,lactate plays an essential role.However,its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation.The involvement of lactate in epigenetic modifications is currently a hot research topic,especially in lactylation modification,a key determinant in this process.Lactate also indirectly regulates various epigenetic modifications,such as N6-methyladenosine,acetylation,ubiquitination,and phosphorylation modifications,which are closely linked to several neurological disorders.In addition,exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments. 展开更多
关键词 ASTROCYTE epigenetic modifications inflammation LACTATE lactylation METABOLIC PLASTICITY regeneration treatment
暂未订购
Hippocampal damage through foreign body placement in organotypic cultures leads to plastic responses in newly born granule cells
11
作者 Tassilo Jungenitz Lukas Frey +2 位作者 Sophia Kirscht Stephan W.Schwarzacher Angélica Zepeda 《Neural Regeneration Research》 2026年第3期1142-1150,共9页
The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves gl... The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves global alterations,making understanding plastic responses triggered by local damage difficult.One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche,the subgranular zone,and beyond neurogenesis,newly born granule cells may maintain a“young”phenotype throughout life,adding to the plastic nature of the structure.Here,we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells.A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus,which evoked a foreign body reaction of astrocytes,along with the activation of local young neurons expressing doublecortin.Forty-eight hours after foreign body placement,the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body,whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus.Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus.Seven days after foreign body placement in the dentate gyrus,the increase in doublecortin-immunoreactivity was no longer observed,indicating the transient activation of young cells.However,7 days after foreign body placement,the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions.As calbindin is a marker for mature granule cells,this result suggests that activated young cells remain at a more immature stage following foreign body placement.Live imaging of retrovirally green fluorescent protein-labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement.This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity,specifically of newly born neurons under controlled in vitro conditions. 展开更多
关键词 ASTROCYTE brain plasticity dendritic plasticity dentate gyrus focal brain injury hippocampus NEUROPLASTICITY NEUROREPAIR newborn granule cells regeneration REORGANIZATION
暂未订购
Neuronal plasticity and its role in Alzheimer's disease and Parkinson's disease
12
作者 Israt Jahan Mohammad Harun-Ur-Rashid +4 位作者 MdAminul Islam Farhana Sharmin Soad K.Al Jaouni Abdullah M.Kaki Samy Selim 《Neural Regeneration Research》 2026年第1期107-125,共19页
Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinso... Neuronal plasticity,the brain's ability to adapt structurally and functionally,is essential for learning,memory,and recovery from injuries.In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease,this plasticity is disrupted,leading to cognitive and motor deficits.This review explores the mechanisms of neuronal plasticity and its effect on Alzheimer's disease and Parkinson's disease.Alzheimer's disease features amyloid-beta plaques and tau tangles that impair synaptic function,while Parkinson's disease involves the loss of dopaminergic neurons affecting motor control.Enhancing neuronal plasticity offers therapeutic potential for these diseases.A systematic literature review was conducted using databases such as PubMed,Scopus,and Google Scholar,focusing on studies of neuronal plasticity in Alzheimer's disease and Parkinson's disease.Data synthesis identified key themes such as synaptic mechanisms,neurogenesis,and therapeutic strategies,linking molecular insights to clinical applications.Results highlight that targeting synaptic plasticity mechanisms,such as long-term potentiation and long-term depression,shows promise.Neurotrophic factors,advanced imaging techniques,and molecular tools(e.g.,clustered regularly interspaced short palindromic repeats and optogenetics)are crucial in understanding and enhancing plasticity.Current therapies,including dopamine replacement,deep brain stimulation,and lifestyle interventions,demonstrate the potential to alleviate symptoms and improve outcomes.In conclusion,enhancing neuronal plasticity through targeted therapies holds significant promise for treating neurodegenerative diseases.Future research should integrate multidisciplinary approaches to fully harness the therapeutic potential of neuronal plasticity in Alzheimer's disease and Parkinson's disease. 展开更多
关键词 Alzheimer's disease long-term depression long-term potentiation NEUROINFLAMMATION neuronal plasticity Parkinson's disease synaptic plasticity
暂未订购
Brain structural plasticity in large-brained mammals:Not only narrowing roads
13
作者 Marco Ghibaudi Alessandro Zanone Luca Bonfanti 《Neural Regeneration Research》 2026年第5期1669-1680,共12页
The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.H... The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders. 展开更多
关键词 adult neurogenesis AMYGDALA brain plasticity cerebral cortex comparative approach evolution immature neurons
暂未订购
Plasticity meets regeneration during innate spinal cord repair
14
作者 Amruta Tendolkar Mayssa H.Mokalled 《Neural Regeneration Research》 2026年第3期1136-1137,共2页
Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative... Regenerative capacity of the central nervous system(CNS)is unevenly distributed among vertebrates.While most mammalian species including humans elicit limited repair following CNS injury or disease,highly regenerative vertebrates including urodele amphibians and teleost fish spontaneously reverse CNS damage.Teletost zebrafish(danio rerio)are tropical freshwater fish that proved to be an excellent vertebrate model of successful CNS regeneration.Differential neuronal,glial,and immune injury responses underlie disparate injury outcomes between highly regenerative zebrafish and poorly regenerative mammals.This article describes complications associated with neuronal repair following spinal cord injury(SCI)in poorly regenerative mammals and highlights intersecting modes of plasticity and regeneration in highly regenerative zebrafish(Figures 1 and 2).Comparative approaches evaluating immunoglial SCI responses were recently reviewed elsewhere(Reyes and Mokalled,2024). 展开更多
关键词 urodele amphibians central nervous system central nervous system cns REGENERATION vertebrate model PLASTICITY vertebrates teleost fish
暂未订购
Synapses and dendritic spines are eliminated in the primary visual cortex of mice subjected to chronic intraocular pressure elevation
15
作者 Xinyi Zhang Deling Li +6 位作者 Weiting Zeng Yiru Huang Zongyi Zhan Yuning Zhang Qinyuan Hu Lianyan Huang Minbin Yu 《Neural Regeneration Research》 2026年第3期1236-1248,共13页
Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease.Glaucoma directly impairs retinal ganglio... Synaptic plasticity is essential for maintaining neuronal function in the central nervous system and serves as a critical indicator of the effects of neurodegenerative disease.Glaucoma directly impairs retinal ganglion cells and their axons,leading to axonal transport dysfuntion,subsequently causing secondary damage to anterior or posterior ends of the visual system.Accordingly,recent evidence indicates that glaucoma is a degenerative disease of the central nervous system that causes damage throughout the visual pathway.However,the effects of glaucoma on synaptic plasticity in the primary visual cortex remain unclear.In this study,we established a mouse model of unilateral chronic ocular hypertension by injecting magnetic microbeads into the anterior chamber of one eye.We found that,after 4 weeks of chronic ocular hypertension,the neuronal somas were smaller in the superior colliculus and lateral geniculate body regions of the brain contralateral to the affected eye.This was accompanied by glial cell activation and increased expression of inflammatory factors.After 8 weeks of ocular hypertension,we observed a reduction in the number of excitatory and inhibitory synapses,dendritic spines,and activation of glial cells in the primary visual cortex contralateral to the affected eye.These findings suggest that glaucoma not only directly damages the retina but also induces alterations in synapses and dendritic spines in the primary visual cortex,providing new insights into the pathogenesis of glaucoma. 展开更多
关键词 chronic ocular hypertension dendritic spines GLAUCOMA glial cells NEUROINFLAMMATION NEURON retinal ganglion cells synaptic plasticity visual cortex visual pathway
暂未订购
Revisiting collagen:A breaching point in tumor immunotherapy
16
作者 Yi-Da Wang Hai-Yue You +3 位作者 Feng Zhang Xin Ning Jie Mei Yan Zhang 《Life Research》 2026年第1期1-4,共4页
Immunotherapy has brought unprecedented breakthroughs to advanced malignant tumors,yet the immune microenvironment shaped by the tumor stroma has often been underestimated in the traditional focus on the“immune check... Immunotherapy has brought unprecedented breakthroughs to advanced malignant tumors,yet the immune microenvironment shaped by the tumor stroma has often been underestimated in the traditional focus on the“immune checkpoint-T cell”axis.Collagen not only constitutes a mechanical barrier that distinguishes between the periphery and core of solid tumors but also systematically remodels the orientation of metabolism,vasculature,and immune cell phenotypic plasticity through its spatial density,fiber arrangement,and crosslinking patterns(F igure 1)[1,2].Abundant evidence suggests that over-accumulated types I and III collagen drive CD8+T cell exhaustion,NK cell functional inhibition,and tumor-associated macrophage polarization through ligand-receptor networks involving LAIR-1,DDR2,andβ1/β3 integrins[3-6].Mechanistically,collagen engagement of LAIR-1 delivers inhibitory signals in effector lymphocytes,promoting dysfunctional or exhausted states[7-9].In parallel,collagen-β1/β3 integrin signaling activates mechanotransduction pathways(e.g.,FAK/SRC),reducing T-cell motility and immune-tumor contact,while DDR2 activation supports matrix-remodeling programs that limit lymphocyte trafficking. 展开更多
关键词 immune microenvironment advanced malignant tumorsyet tumor immunotherapy immune cell phenotypic plasticity COLLAGEN tumor stroma collagen I solid tumors
暂未订购
Differential plasticity of excitatory and inhibitory reticulospinal fibers after spinal cord injury:Implication for recovery
17
作者 Rozaria Jeleva Carmen Denecke Muhr +1 位作者 Alina P.Liebisch Florence M.Bareyre 《Neural Regeneration Research》 2026年第5期2011-2020,共10页
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ... The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury. 展开更多
关键词 GABAergic(vGat)fibers gait features glutamatergic(vGlut2)fibers PLASTICITY recovery of function reticulospinal tract spinal cord injury
暂未订购
Recent developments of anti-plasticized membranes for aggressive CO_(2)separation 被引量:2
18
作者 Yongchao Sun Xiaoyu Wang +4 位作者 Xiangcun Li Wu Xiao Yan Dai Canghai Ma Gaohong He 《Green Chemical Engineering》 CSCD 2023年第1期1-16,共16页
Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pres... Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pressures allows increased separation productivity and reduced gas compression cost,which,however,often leads to CO_(2)induced plasticization,a key hurdle for current gas separation membranes.In this review,we reviewed the latest development of membranes with anti-plasticization resistance,potentially suited for operation under high CO_(2)feed streams.Specifically,the separation performance of polymeric membranes,inorganic membranes,and mixed matrix membranes under high CO_(2)feed pressures are discussed.Approaches to enhance CO_(2)induced plasticization of those membranes are also summarized.We conclude the recent progress of membranes for high CO_(2)pressures with perspectives and an outlook for future development. 展开更多
关键词 Carbon dioxide High feed pressure PLASTICIZATION Polymeric membranes Inorganic membranes Mixed matrix membranes
原文传递
Conductivity Studies of the Plasticized-Poly(methylmethacrylate) Polymer Electrolytes
19
作者 A.Ahmad Z.Osman 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期818-,共1页
1 Results In this work,five systems of polymethylmethacrylate (PMMA)-based polymer electrolytes films have been prepared by the solution casting technique.The five systems are the (PMMA-EC) system,the (PMMA + PC) syst... 1 Results In this work,five systems of polymethylmethacrylate (PMMA)-based polymer electrolytes films have been prepared by the solution casting technique.The five systems are the (PMMA-EC) system,the (PMMA + PC) system,the (PMMA+LiCF3SO3) system,the ([PMMA+EC]+LiCF3SO3) system and the ([PMMA+PC]+LiCF3SO3) system.The conductivity for each system is characterized using impedance spectroscopy.The conductivity of the pure PMMA,the (PMMA+EC) system and the (PMMA+PC) system at room temperature is 2.37×10-9,3... 展开更多
关键词 CONDUCTIVITY polymer electrolyte PMMA plasticizer and LiCF3SO3
在线阅读 下载PDF
轴向冲击载荷下深沟球轴承的损伤及响应研究
20
作者 金峰 蔡振清 +3 位作者 谢志浩 刘璐璐 赵振华 陈伟 《航空动力学报》 北大核心 2025年第4期182-191,共10页
针对轴向冲击载荷下转子轴承的损伤和响应问题开展了研究,设计了一种试验室用模拟航空发动机轴承损伤试验台,并建立了基于plastic kinematic(PK)本构模型的轴承冲击有限元模型,研究了低、中、高这3种冲击速度下深沟球轴承的损伤和响应... 针对轴向冲击载荷下转子轴承的损伤和响应问题开展了研究,设计了一种试验室用模拟航空发动机轴承损伤试验台,并建立了基于plastic kinematic(PK)本构模型的轴承冲击有限元模型,研究了低、中、高这3种冲击速度下深沟球轴承的损伤和响应。结果表明:有限元仿真计算结果与试验误差在10%以内,随着冲击速度增大,轴承滚珠的损伤形式由细长的凹痕增大为区域型的凹坑,损伤产生的原因为由于变形引起的滚珠与轴承内外圈之间的挤压;不同速度的冲击过程中,最大应力总是出现在轴承滚珠上,且滚珠与轴承内外圈之间接触力及变化规律基本一致;保持架接合处和与滚珠接触的内圈位置为轴向载荷冲击下的塑性变形较大位置处。 展开更多
关键词 轴向冲击载荷 深沟球轴承 plastic kinematic(PK)本构模型 宏观损伤 动态响应
原文传递
上一页 1 2 177 下一页 到第
使用帮助 返回顶部