Polylactide(PLA)films blended with poly(butylene adipate-co-terephthalate)(PBAT)were hot melted using a twin screw extruder with the addition of triethyl citrate(TEC)as a plasticizer and toluene diisocyanate(TDI)as a ...Polylactide(PLA)films blended with poly(butylene adipate-co-terephthalate)(PBAT)were hot melted using a twin screw extruder with the addition of triethyl citrate(TEC)as a plasticizer and toluene diisocyanate(TDI)as a compatibilizer.The synergistic effects of the two additives on the mechanical,thermal,and morphological properties of the PLA/PBAT blend films were investigated.The influence of TEC content on the plasticized PLA films and the effect of TDI’s presence on the PLA/PBAT blend films were also studied by comparing them with neat PLA.The results showed a pronounced increase in elongation at break of the plasticized PLA films with increasing TEC levels,but a slight reduction in thermal stability.Also,the addition of TEC and TDI to the blend system not only synergistically enhanced the tensile properties and tensile-impact strength of the PLA/PBAT blends,but also affected their crystallinity and cold crystallization rate,a result of the improvement of interfacial interaction between PLA and PBAT,including the enhancement of their chain mobility.The synergy of the plasticization and compatibilization processes led to the improvement of tensile properties,tensile-impact strength,and compatibility of the blends,accelerating cold crystallization without affecting crystallization.展开更多
Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results...Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.展开更多
A plasticizer triethylene glycol maleate(TEG-MA) was synthesized. The dominated monoester of moderate hydrophobicity with apparent oil-water partition coefficient of 0.042 in the product was confirmed by acid value ...A plasticizer triethylene glycol maleate(TEG-MA) was synthesized. The dominated monoester of moderate hydrophobicity with apparent oil-water partition coefficient of 0.042 in the product was confirmed by acid value determination, HPLC and FTIR. Its plasticizing effect on oxidized starch was manifested by crystallization, aging behaviour, moisture absorption, and mechanical performance. X-ray diffraction data showed that the relative crystallinity of the plasticized starch decreased. Both the crystal and the crystallinity of starch films were rarely changed in aging. Moisture absorption relied on the ester content and relative humidity. The elongation at break increased significantly with plasticizer content more than 10% in the matrix.展开更多
The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the requir...The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing.However,these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC.This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process.In this work,two kinds of grafted PVC samples(tungoil derivative grafted PVC and Atz grafted PVC,abbreviated as P-GT4 and P-AZ3)were synthesized by chemical grafting of 3-amino-1,2,4-triazole(Atz)and tung-oil derivative on PVC,respectively.These two PVC samples were then blended at different mass ratios to obtain hybrid PVC materials with excellent plasticization,thermal stability and migration resistance ability.Differential scanning calorimetry(DSC),discoloration,Congo red test and thermogravimetric analysis(TGA)showed that when the mass ratio of P-GT4 to P-AZ3 in the mixed PVC resin was 1:3,the resulting P1:3-GT4-AZ3(P4)presented the best plasticization and thermal stability.The kinetics of thermal decomposition showed that the activation energy of P4 was much higher than that of the reference material[PVC/DOTP/CaSt2/ZnSt2,PVC/CZ41 for short]at mass lossα=20%and 80%.In addition,the leaching test showed that P4 material possessed excellent migration resistance ability.展开更多
Tributyl citrate (TBC) plasticizer has been selected to prepare the novel plasticized PC under different time and temperature. The TBC plasticization effect on PC T, mechanical properties and morphology has been inv...Tributyl citrate (TBC) plasticizer has been selected to prepare the novel plasticized PC under different time and temperature. The TBC plasticization effect on PC T, mechanical properties and morphology has been investigated by DMTA, DSC, tensile test and SEM. The results show that the TBC content in PC is controlled by plasticization time and temperature. The mass-loss test has conftnned a less lost rate of TBC in PC. The T declines gradually with increasing TBC content. The tensile modulus and strength of the plasticized PC also decrease with the increase of TBC content, and an approximate linear relationship is found to exist between the TBC content and the tensile modulus and strength. The SEM images show that significant changes have taken place on the surface and in the cross-section of plasticized thin PC sheet.展开更多
Pharmaceutical solid dosage forms are commonly coated to modify the release of drugs. Due to the disadvantages of coated single-unit dosage forms, such as occurrences of dose dumping and local irritation, coated multi...Pharmaceutical solid dosage forms are commonly coated to modify the release of drugs. Due to the disadvantages of coated single-unit dosage forms, such as occurrences of dose dumping and local irritation, coated multi-particulates are preferred.Coated multi-particulates can eventually be filled into capsules or compressed into tablets.展开更多
The photodegradation of thin films of poly (4-chlorostyrene) and poly (4-bromostyrene) with 265 nm radiation in the presence of oxygen and as a function of irradiation time has been studied mainly using fluorescence, ...The photodegradation of thin films of poly (4-chlorostyrene) and poly (4-bromostyrene) with 265 nm radiation in the presence of oxygen and as a function of irradiation time has been studied mainly using fluorescence, FT-IR, and UV-VIS spectroscopic techniques. The influence of phthalate and terephthalate plasticizers on photo-oxidative degradation was also investigated. Phthalate and terephthalate-plasticizers were found to increase the photodegradation processes in polymeric chains. On the other hand, the intensity of absorption was also found to increase with irradiation time and in the intensity of a new absorption band at longer wavelength. The appearance of new fluorescence bands in the irradiated polymer films can well indicate a possibility of photodegradation of polymer films. In addition, the observed increase in the intensities of the carbonyl and hydroxyl regions of the FT-IR spectra, providing evidence for the photodegradation as well as the photo-oxidation of polymeric chains. The increase in the analyzed ranges was attributed to the formation of alcohols, aliphatic ketones and to the increase in the number of (C=C) that resulted from hydrogen abstraction during chains - scission.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene g...Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.展开更多
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie...Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.展开更多
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.Howeve...To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.展开更多
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna...Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.展开更多
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over...Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th...Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss...The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.展开更多
Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulat...Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.展开更多
基金financially supported by Development and Promotion of Science and Technology Talents (DPST) (No. 013/2559)
文摘Polylactide(PLA)films blended with poly(butylene adipate-co-terephthalate)(PBAT)were hot melted using a twin screw extruder with the addition of triethyl citrate(TEC)as a plasticizer and toluene diisocyanate(TDI)as a compatibilizer.The synergistic effects of the two additives on the mechanical,thermal,and morphological properties of the PLA/PBAT blend films were investigated.The influence of TEC content on the plasticized PLA films and the effect of TDI’s presence on the PLA/PBAT blend films were also studied by comparing them with neat PLA.The results showed a pronounced increase in elongation at break of the plasticized PLA films with increasing TEC levels,but a slight reduction in thermal stability.Also,the addition of TEC and TDI to the blend system not only synergistically enhanced the tensile properties and tensile-impact strength of the PLA/PBAT blends,but also affected their crystallinity and cold crystallization rate,a result of the improvement of interfacial interaction between PLA and PBAT,including the enhancement of their chain mobility.The synergy of the plasticization and compatibilization processes led to the improvement of tensile properties,tensile-impact strength,and compatibility of the blends,accelerating cold crystallization without affecting crystallization.
基金Funded by the Fundamental Research Funds for the Central Universities(DL13CB13)the China Postdoctoral Science Foundation Funded Project(No.2014M550178)the National Natural Science Foundation of China(No.31200442)
文摘Ethylene glycol, glycerol, sorbitol, formamide, and urea were used as plasticizers for the preparation of thermoplastic starch(TPS) from corn starch. The properties of TPS were tested by analysis method. The results showed that TPSs were more highly plasticized with amines than alcohols. For the same type of plasticizer, the degree of plasticization decreased as the molecular weight of plasticizer increased. The relationship between plasticization degree and TPS properties was characterized and described by mechanical properties and water absorption. The experimental results showed that when the degree of plasticization increased, the tensile strength decreased and the elongation at breakage and water absorption increased.
基金Funded by Science and Technology Support Project of Sichuan Province(Nos.2014GZ0136 and 2015GZ0176)National Natural Science Foundation of China(No.51603134)
文摘A plasticizer triethylene glycol maleate(TEG-MA) was synthesized. The dominated monoester of moderate hydrophobicity with apparent oil-water partition coefficient of 0.042 in the product was confirmed by acid value determination, HPLC and FTIR. Its plasticizing effect on oxidized starch was manifested by crystallization, aging behaviour, moisture absorption, and mechanical performance. X-ray diffraction data showed that the relative crystallinity of the plasticized starch decreased. Both the crystal and the crystallinity of starch films were rarely changed in aging. Moisture absorption relied on the ester content and relative humidity. The elongation at break increased significantly with plasticizer content more than 10% in the matrix.
基金the National Natural Science Foundation of China(21905117)Guangxi Key Laboratory of Chemistry and Engineering of Forest Products(GXFK2203)and the Natural Science Foundation of Jiangsu Province(BK20201128)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing.However,these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC.This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process.In this work,two kinds of grafted PVC samples(tungoil derivative grafted PVC and Atz grafted PVC,abbreviated as P-GT4 and P-AZ3)were synthesized by chemical grafting of 3-amino-1,2,4-triazole(Atz)and tung-oil derivative on PVC,respectively.These two PVC samples were then blended at different mass ratios to obtain hybrid PVC materials with excellent plasticization,thermal stability and migration resistance ability.Differential scanning calorimetry(DSC),discoloration,Congo red test and thermogravimetric analysis(TGA)showed that when the mass ratio of P-GT4 to P-AZ3 in the mixed PVC resin was 1:3,the resulting P1:3-GT4-AZ3(P4)presented the best plasticization and thermal stability.The kinetics of thermal decomposition showed that the activation energy of P4 was much higher than that of the reference material[PVC/DOTP/CaSt2/ZnSt2,PVC/CZ41 for short]at mass lossα=20%and 80%.In addition,the leaching test showed that P4 material possessed excellent migration resistance ability.
基金Funded by the Natural Science Foundation of Hubei Province(No.2010CDB04604)
文摘Tributyl citrate (TBC) plasticizer has been selected to prepare the novel plasticized PC under different time and temperature. The TBC plasticization effect on PC T, mechanical properties and morphology has been investigated by DMTA, DSC, tensile test and SEM. The results show that the TBC content in PC is controlled by plasticization time and temperature. The mass-loss test has conftnned a less lost rate of TBC in PC. The T declines gradually with increasing TBC content. The tensile modulus and strength of the plasticized PC also decrease with the increase of TBC content, and an approximate linear relationship is found to exist between the TBC content and the tensile modulus and strength. The SEM images show that significant changes have taken place on the surface and in the cross-section of plasticized thin PC sheet.
文摘Pharmaceutical solid dosage forms are commonly coated to modify the release of drugs. Due to the disadvantages of coated single-unit dosage forms, such as occurrences of dose dumping and local irritation, coated multi-particulates are preferred.Coated multi-particulates can eventually be filled into capsules or compressed into tablets.
文摘The photodegradation of thin films of poly (4-chlorostyrene) and poly (4-bromostyrene) with 265 nm radiation in the presence of oxygen and as a function of irradiation time has been studied mainly using fluorescence, FT-IR, and UV-VIS spectroscopic techniques. The influence of phthalate and terephthalate plasticizers on photo-oxidative degradation was also investigated. Phthalate and terephthalate-plasticizers were found to increase the photodegradation processes in polymeric chains. On the other hand, the intensity of absorption was also found to increase with irradiation time and in the intensity of a new absorption band at longer wavelength. The appearance of new fluorescence bands in the irradiated polymer films can well indicate a possibility of photodegradation of polymer films. In addition, the observed increase in the intensities of the carbonyl and hydroxyl regions of the FT-IR spectra, providing evidence for the photodegradation as well as the photo-oxidation of polymeric chains. The increase in the analyzed ranges was attributed to the formation of alcohols, aliphatic ketones and to the increase in the number of (C=C) that resulted from hydrogen abstraction during chains - scission.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金supported by the Department of Defense AFIRMⅢW81XWH-20-2-0029 grant subcontractLone Star Paralysis gift,UT POC19-1774-13 grant+1 种基金Neuraptive Therapeutics Inc.26-7724-56 grantNational Institutes of Health R01-NS128086(all to GDB)。
文摘Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.
基金supported by the National Key R&D Program of China(No.2022YFC3901800)the National Natural Science Foundation of China(No.22176041)Guangzhou Science and Technology Planning Project(No.2023A04J0918)。
文摘Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT.
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金supported by the National Natural Science Foundation of China(No.22276139)the Shanghai’s Municipal State-owned Assets Supervision and Administration Commission(No.2022028).
文摘To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.
基金Financial supports from the National Natural Science Foundation of China(Nos.52171116,U22A20109,52334010 and T2325013)are greatly acknowledgedPartial financial support came from The Program for the Central University Youth Innovation Team,and the Fundamental Research Funds for the Central Universities,JLU.
文摘Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.
基金supported by Progetto Trapezio,Compagnia di San Paolo(67935-2021.2174)to LB,Fondazione CRT(Cassa di Risparmio di Torino,RF=2022.0618)to LB。
文摘Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023).
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金supported by the National Key Research and Development Program of China,No.2021ZD0202503(to AHT)the National Natural Science Foundation of China,Nos.31872759(to AHT)and 32070707(to CF)+1 种基金Shenzhen Science and Technology Program,No.RCJC20210609104333007(to ZW)Shenzhen-Hong Kong Institute of Brain Science,Shenzhen Fundamental Research Institutions,No.2021SHIBS0002(to ZW).
文摘Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
基金supported by the National Key R&D Program of China(No.2017YFB0304402)。
文摘The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
基金supported by a grant from the Massachusetts Alzheimer’s Disease Research Center(5P50 AG 005134)(to SL).
文摘Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.