With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and vari...With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix.展开更多
The viscoplasticity and compressive strength of cement with high erosion performance were studied. The influences of curing temperature and content of ground granulated blast furnace slag(GGBFS) on these performances ...The viscoplasticity and compressive strength of cement with high erosion performance were studied. The influences of curing temperature and content of ground granulated blast furnace slag(GGBFS) on these performances of the medium heat cement(including high iron and low calcium phase) were also investigated. The results indicate that the medium heat cement with high iron phase can maintain better fluidity and low temperature sensitivity than that of ordinary Portland cement at high temperature. GGBFS can play an important role in improving the fluidity and stability of the slurry, and avoid the cement setting and hardening prematurely at high temperatures. The microstructure analysis shows that a large amount of CH with layer shape appear in the slurry. The amount of this gel layer in the slurry increased as the curing temperature elevated. The layer can make the cement stone structure more denser, so that the compressive strength of samples are enhanced in the later stage. When the medium heat cement contains 40% GGBFS, the system has the best flow performance and stability under high temperature environment, and can be applied to mass concrete with excessive internal temperature.展开更多
The mechanical properties of high density foamed plastics under uniaxial load are investigated and the relations of shear modulus and yield strength with porosity are derived from the self consistent model. The result...The mechanical properties of high density foamed plastics under uniaxial load are investigated and the relations of shear modulus and yield strength with porosity are derived from the self consistent model. The results show that not only can the same shear moduli with the ones derived from the three phase spheroidal model be obtained with the present model, but also the theoretical yield strength of high density foamed plastics can be obtained. By comparing the present results with those of other empirical models as well as the available experimental data, it is shown that the yield strength of high density foamed plastics can be predicted quite well with this model.展开更多
文摘With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix.
基金Funded by National Key Research and Development Program of China(No.2016YFB0303501)
文摘The viscoplasticity and compressive strength of cement with high erosion performance were studied. The influences of curing temperature and content of ground granulated blast furnace slag(GGBFS) on these performances of the medium heat cement(including high iron and low calcium phase) were also investigated. The results indicate that the medium heat cement with high iron phase can maintain better fluidity and low temperature sensitivity than that of ordinary Portland cement at high temperature. GGBFS can play an important role in improving the fluidity and stability of the slurry, and avoid the cement setting and hardening prematurely at high temperatures. The microstructure analysis shows that a large amount of CH with layer shape appear in the slurry. The amount of this gel layer in the slurry increased as the curing temperature elevated. The layer can make the cement stone structure more denser, so that the compressive strength of samples are enhanced in the later stage. When the medium heat cement contains 40% GGBFS, the system has the best flow performance and stability under high temperature environment, and can be applied to mass concrete with excessive internal temperature.
文摘The mechanical properties of high density foamed plastics under uniaxial load are investigated and the relations of shear modulus and yield strength with porosity are derived from the self consistent model. The results show that not only can the same shear moduli with the ones derived from the three phase spheroidal model be obtained with the present model, but also the theoretical yield strength of high density foamed plastics can be obtained. By comparing the present results with those of other empirical models as well as the available experimental data, it is shown that the yield strength of high density foamed plastics can be predicted quite well with this model.