The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steelwires and plastic. Because reinforced skeleton of the steel wire increase the complexityof plastic flow during the extrusion ph...The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steelwires and plastic. Because reinforced skeleton of the steel wire increase the complexityof plastic flow during the extrusion phase, the traditional design criteria of extrusiondie is not suitable. The study on extrusion die of the kind of pipe is very importantstep in produce development. Using finite element (FE) method in this paper, theflow rule of molten plastic inside the die has been predicted and a groap of optimalstructural parameters was obtained. These results are helpful for reducing the designcycle and improve the quality of the final product.展开更多
With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretica...With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.展开更多
In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and ...In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and the corresponding equivalent stress and strain are obtained for thin-walled pipes, which can take into account the effects of material plastic anisotropy and strain hardening exponent. The influences of plastic anisotropy on the burst pressure and the corresponding equivalent stress and strain are discussed. It is shown that the burst pressure and the corresponding equivalent stress and strain are dependent upon the plastic anisotropy of material, and the degree of dependence is related to the strain hardening exponent of material. In addition, the effects of the strain hardening exponent on burst failure are investigated.展开更多
In the present investigation, a pipe inner-surface grinding(PISG) technique was developed to fabricate nanostructure in the inner-surface of an austenitic 304 stainless steel pipe. PISG was performed by high speed s...In the present investigation, a pipe inner-surface grinding(PISG) technique was developed to fabricate nanostructure in the inner-surface of an austenitic 304 stainless steel pipe. PISG was performed by high speed shearing with hard sphere tips, leading to gradient distribution of strain, strain rate and strain gradient along depth. Nano-austenite with an average boundary spacing of 20 nm was generated, followed by deformation microstructure characterized by shear bands, multi-and uni-directional twins and planar dislocation arrays. Deformation induced grain refinement of austenitic 304 stainless steel with low stacking fault energy(SFE) covering 4–5 order's magnitude of length scales toward nanometer regime was unified.展开更多
文摘The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steelwires and plastic. Because reinforced skeleton of the steel wire increase the complexityof plastic flow during the extrusion phase, the traditional design criteria of extrusiondie is not suitable. The study on extrusion die of the kind of pipe is very importantstep in produce development. Using finite element (FE) method in this paper, theflow rule of molten plastic inside the die has been predicted and a groap of optimalstructural parameters was obtained. These results are helpful for reducing the designcycle and improve the quality of the final product.
基金Project (No. X106871) supported by the Natural Science Foundation of Zhejiang Province,China
文摘With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.
文摘In the framework of finite deformation theory, the burst failure analysis of end-opened defect-free pipes with plastic anisotropy under internal pressure is carried out. The analytical solutions of burst pressure and the corresponding equivalent stress and strain are obtained for thin-walled pipes, which can take into account the effects of material plastic anisotropy and strain hardening exponent. The influences of plastic anisotropy on the burst pressure and the corresponding equivalent stress and strain are discussed. It is shown that the burst pressure and the corresponding equivalent stress and strain are dependent upon the plastic anisotropy of material, and the degree of dependence is related to the strain hardening exponent of material. In addition, the effects of the strain hardening exponent on burst failure are investigated.
基金supported financially by the Hundred Outstanding Creative Talents Projects in University of Hebei ProvinceChina, the Project Program of Heavy Machinery Collaborative Innovation Center+1 种基金the Natural Science Foundation of Hebei Province, China (No. E2018203312)the Postdoctoral Science Foundation of Hebei Province, China
文摘In the present investigation, a pipe inner-surface grinding(PISG) technique was developed to fabricate nanostructure in the inner-surface of an austenitic 304 stainless steel pipe. PISG was performed by high speed shearing with hard sphere tips, leading to gradient distribution of strain, strain rate and strain gradient along depth. Nano-austenite with an average boundary spacing of 20 nm was generated, followed by deformation microstructure characterized by shear bands, multi-and uni-directional twins and planar dislocation arrays. Deformation induced grain refinement of austenitic 304 stainless steel with low stacking fault energy(SFE) covering 4–5 order's magnitude of length scales toward nanometer regime was unified.