While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship b...While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship by studying the responses of tiger frog (Hoplobatrachus chinensis) tadpoles to simulated hydroperiods (i.e., constant low water levels, constant high water levels, increasing water levels, decreasing water levels, rapid changes in water levels and gradual fluctuations in water levels) in a laboratory setting. ANOVA analysis showed that none of the water level treatments had any significant effect on the total length, body mass, or developmental stages of H. chinensis tadpoles half way through development (11 days old). Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis, whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis. None of the water level treatments had a significant effect on the snout-vent length (SVL) or body mass of H. chinensis tadpoles at Gosner stage 42, or on the body mass of tadpoles at Gosner stage 45. However, the' tadpoles raised in high levels and rapidly fluctuating water levels, significantly larger SVL at Gosner stage 45, while ones under gradually fluctuating water levels had smaller SVL than the other groups. Time to metamorphosis was positively correlated with body size (SVL) at metamorphosis in H. chinensis tadpoles. H. chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments (G-test). Moreover, ANOVA and ACNOVA (with body length as the covariate) indicated that water levels had no significant effect on either the morphology (i.e. head length, head width, forelimb length, hindlimb length and body width) or the jumping ability of juvenile H. chinensis. These results suggest that the observed accelerated metamorphosis and high mortality of H. chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interaetions among increasing conspeeifics.展开更多
Adaptive developmental plasticity can enable an organism to modify its phenotype rapidly, in response to local (and perhaps, unpredictable) conditions, by altering reaction norms during development. Previous studies...Adaptive developmental plasticity can enable an organism to modify its phenotype rapidly, in response to local (and perhaps, unpredictable) conditions, by altering reaction norms during development. Previous studies on this topic have been dominated by western scientists, employing western study systems and approaches. Recently, the expansion of Chinese ecological research has seen a broadening of studies taxonomically (phylogenetically). Here, we briefly summarize research that has been conducted on developmental plasticity in Chinese reptiles over the past two decades, and suggest productive directions for future studies in this field. There are exciting research opportunities in this field in China, and we call for increased collaboration between western and eastern scientists to elucidate the role of developmental plasticity in evolutionary responses of organisms to environmental changes. As human activities increase the intensity and frequency of such changes, the need to understand responses of biological systems becomes an increasingly urgent priority.展开更多
Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabol...Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.展开更多
By using multi-pass straight-line scan strategies,a larger bending angle can be achieved.There is,however,a limited understanding of the variation in bending angle per pass during multi-pass under various process para...By using multi-pass straight-line scan strategies,a larger bending angle can be achieved.There is,however,a limited understanding of the variation in bending angle per pass during multi-pass under various process parameters.In multi-pass laser scanning,the bending angle cannot always linearly increase with scanning passes and this phenomenon can be observed mostly in low heat input.Strain hardening is the common explanation for this phenomenon.However,it could not explain why this bending angle reduction phenomenon occurs at low heat input scanning rather than at high heat input scanning.In this study,this phenomenon is discussed based on strain development in experiments and numerical simulation.The different growing mechanism of plastic strain is analyzed to reveal the effects of laser power and scanning velocity.Furthermore,the opposite bending trend that occurred at larger laser power is discussed in comparison to the plastic strain development.The study shows that relatively larger heat input below 6.7 J/mm can help to avoid the bending angle reduction phenomenon and the opposite bending trend is highly dependent on the larger laser power.For achieving the expected cumulative bending angle in multi-pass laser bending,it is recommended to decrease the scanning velocity at a relatively low laser power level while increase the scanning velocity at a high level of laser power.展开更多
A major basic research projectin the field of neurosciencewas launched on November26 last year at the Shanghai-basedInstitute of Neuroscience of the Chi-nese Academy of Sciences(CAS).
It is generally accepted that taxa exhibit genetic variation in phenotypic plasticity, but many questions remain unan- swered about how divergent plastic responses evolve under dissimilar ecological conditions. Hormon...It is generally accepted that taxa exhibit genetic variation in phenotypic plasticity, but many questions remain unan- swered about how divergent plastic responses evolve under dissimilar ecological conditions. Hormones are signaling molecules that act as proximate mediators of phenotype expression by regulating a variety of cellular, physiological, and behavioral re- sponses. Hormones not only change cellular and physiological states but also influence gene expression directly or indirectly, thereby linking environmental conditions to phenotypic development. Studying how hormonal pathways respond to environ- mental variation and how those responses differ between individuals, populations, and species can expand our understanding of the evolution of phenotypic plasticity. Here, we explore the ways that the study of hormone signaling is providing new insights into the underlying proximate bases for individual, population or species variation in plasticity. Using several studies as exem- plars, we examine how a 'norm of reaction' approach can be used in investigations of hormone-mediated plasticity to inform the following: 1) how environmental cues affect the component hormones, receptors and enzymes that comprise any endocrine sig- naling pathway, 2) how genetic and epigenetic variation in endocrine-associated genes can generate variation in plasticity among these diverse components, and 3) how phenotypes mediated by the same hormone can be coupled and decoupled via independent plastic responses of signaling components across target tissues. Future studies that apply approaches such as reaction norms and network modeling to questions concerning how hormones link environmental stimuli to ecologically-relevant phenotypic re- sponses should help unravel how phenotypic plasticity evolves展开更多
Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming.The effects of developmental temperature on offspring performance are critical in eval...Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming.The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of ovipa-rous species,but the physiological and biochemical basis of this developmental plasticity is largely unknown.In this study,we incubated eggs of the turtle Pelodiscus sinensis at low(24℃),medium(28℃),and high(32℃)temperatures,and evaluated the effects of developmental temperature on offspring fitness,and metabolic enzymes in the neck and limb muscles of hatchlings.The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance(righting response and swimming capacity)and higher activities of metabolic enzymes(hexokinase,HK;lactate dehydrogenase,LDH)than hatchlings from the eggs incubated at high or low temperatures.In addition,the swimming speed and righting response were significantly correlated with the HK activities in limb(swimming speed)and neck(righting response)muscles,suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes.Integrating the fitness-related performance and the activities of metabolic enzymes,we predict that the P sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32℃.展开更多
基金supported by the National Natural Science Foundation of China(31270443,30970435)Technology Plan Project of Lishui(20110426)the College Students Technology Innovation Project in Zhejiang Province(2011R429008)
文摘While developmental plasticity can facilitate evolutionary diversification of organisms, the effects of water levels as an environmental pressure on tiger frogs remains unclear. This study clarifies the relationship by studying the responses of tiger frog (Hoplobatrachus chinensis) tadpoles to simulated hydroperiods (i.e., constant low water levels, constant high water levels, increasing water levels, decreasing water levels, rapid changes in water levels and gradual fluctuations in water levels) in a laboratory setting. ANOVA analysis showed that none of the water level treatments had any significant effect on the total length, body mass, or developmental stages of H. chinensis tadpoles half way through development (11 days old). Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis, whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis. None of the water level treatments had a significant effect on the snout-vent length (SVL) or body mass of H. chinensis tadpoles at Gosner stage 42, or on the body mass of tadpoles at Gosner stage 45. However, the' tadpoles raised in high levels and rapidly fluctuating water levels, significantly larger SVL at Gosner stage 45, while ones under gradually fluctuating water levels had smaller SVL than the other groups. Time to metamorphosis was positively correlated with body size (SVL) at metamorphosis in H. chinensis tadpoles. H. chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments (G-test). Moreover, ANOVA and ACNOVA (with body length as the covariate) indicated that water levels had no significant effect on either the morphology (i.e. head length, head width, forelimb length, hindlimb length and body width) or the jumping ability of juvenile H. chinensis. These results suggest that the observed accelerated metamorphosis and high mortality of H. chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interaetions among increasing conspeeifics.
文摘Adaptive developmental plasticity can enable an organism to modify its phenotype rapidly, in response to local (and perhaps, unpredictable) conditions, by altering reaction norms during development. Previous studies on this topic have been dominated by western scientists, employing western study systems and approaches. Recently, the expansion of Chinese ecological research has seen a broadening of studies taxonomically (phylogenetically). Here, we briefly summarize research that has been conducted on developmental plasticity in Chinese reptiles over the past two decades, and suggest productive directions for future studies in this field. There are exciting research opportunities in this field in China, and we call for increased collaboration between western and eastern scientists to elucidate the role of developmental plasticity in evolutionary responses of organisms to environmental changes. As human activities increase the intensity and frequency of such changes, the need to understand responses of biological systems becomes an increasingly urgent priority.
基金funded by the National Natural Science Foundation of China(32071515 to S.Z.)Graduate Research and Practice Projects of Minzu University of China(SZKY2024035 to R.Z.)。
文摘Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.
基金supported by the National Natural Science Foundation of China(No.61876024)the Natural Science Foundation for higher education of Jiangsu Province(No.21KJA510003&No.21KJB460035)Suzhou Municipal Science and Technology Plan Project(No.SYG202129)。
文摘By using multi-pass straight-line scan strategies,a larger bending angle can be achieved.There is,however,a limited understanding of the variation in bending angle per pass during multi-pass under various process parameters.In multi-pass laser scanning,the bending angle cannot always linearly increase with scanning passes and this phenomenon can be observed mostly in low heat input.Strain hardening is the common explanation for this phenomenon.However,it could not explain why this bending angle reduction phenomenon occurs at low heat input scanning rather than at high heat input scanning.In this study,this phenomenon is discussed based on strain development in experiments and numerical simulation.The different growing mechanism of plastic strain is analyzed to reveal the effects of laser power and scanning velocity.Furthermore,the opposite bending trend that occurred at larger laser power is discussed in comparison to the plastic strain development.The study shows that relatively larger heat input below 6.7 J/mm can help to avoid the bending angle reduction phenomenon and the opposite bending trend is highly dependent on the larger laser power.For achieving the expected cumulative bending angle in multi-pass laser bending,it is recommended to decrease the scanning velocity at a relatively low laser power level while increase the scanning velocity at a high level of laser power.
文摘A major basic research projectin the field of neurosciencewas launched on November26 last year at the Shanghai-basedInstitute of Neuroscience of the Chi-nese Academy of Sciences(CAS).
文摘It is generally accepted that taxa exhibit genetic variation in phenotypic plasticity, but many questions remain unan- swered about how divergent plastic responses evolve under dissimilar ecological conditions. Hormones are signaling molecules that act as proximate mediators of phenotype expression by regulating a variety of cellular, physiological, and behavioral re- sponses. Hormones not only change cellular and physiological states but also influence gene expression directly or indirectly, thereby linking environmental conditions to phenotypic development. Studying how hormonal pathways respond to environ- mental variation and how those responses differ between individuals, populations, and species can expand our understanding of the evolution of phenotypic plasticity. Here, we explore the ways that the study of hormone signaling is providing new insights into the underlying proximate bases for individual, population or species variation in plasticity. Using several studies as exem- plars, we examine how a 'norm of reaction' approach can be used in investigations of hormone-mediated plasticity to inform the following: 1) how environmental cues affect the component hormones, receptors and enzymes that comprise any endocrine sig- naling pathway, 2) how genetic and epigenetic variation in endocrine-associated genes can generate variation in plasticity among these diverse components, and 3) how phenotypes mediated by the same hormone can be coupled and decoupled via independent plastic responses of signaling components across target tissues. Future studies that apply approaches such as reaction norms and network modeling to questions concerning how hormones link environmental stimuli to ecologically-relevant phenotypic re- sponses should help unravel how phenotypic plasticity evolves
基金supported by the National Natural Science Foundation of China(31870391,32271572)supported by Youth Innovation Promotion Association Chinese Academy of Sciences(No.2019085).
文摘Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming.The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of ovipa-rous species,but the physiological and biochemical basis of this developmental plasticity is largely unknown.In this study,we incubated eggs of the turtle Pelodiscus sinensis at low(24℃),medium(28℃),and high(32℃)temperatures,and evaluated the effects of developmental temperature on offspring fitness,and metabolic enzymes in the neck and limb muscles of hatchlings.The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance(righting response and swimming capacity)and higher activities of metabolic enzymes(hexokinase,HK;lactate dehydrogenase,LDH)than hatchlings from the eggs incubated at high or low temperatures.In addition,the swimming speed and righting response were significantly correlated with the HK activities in limb(swimming speed)and neck(righting response)muscles,suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes.Integrating the fitness-related performance and the activities of metabolic enzymes,we predict that the P sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32℃.