期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Optimizing mealworm rearing conditions and gut microbiome function for enhanced plastics biodegradation
1
作者 Hongqin Guo Xin Zhao +1 位作者 Kai Yang Li Cui 《Journal of Environmental Sciences》 2025年第11期417-429,共13页
Insects have become an efficient and eco-friendly bioreactor for plastics and even micro/nano-plastics biodegradation.However,the optimal conditions for rearing insects to maximize plastic biodegradation and the under... Insects have become an efficient and eco-friendly bioreactor for plastics and even micro/nano-plastics biodegradation.However,the optimal conditions for rearing insects to maximize plastic biodegradation and the underlying mechanisms remain unclear,hindering its practical applications.We investigated the effects of multiple rearing factors on plastics degradation efficiency of Tenebrio molitor larvae,including larval instar,water addition frequency,plastic specific surface area and plastic types.The functional gut microbes and enzymes associated with the improved efficiency were further explored.Our findings revealed that adult larvae achieved the highest plastics degradation efficiency when receiving regular water additions without causing drowning of insects on hydrophobic plastics.Additionally,they effectively ingested foam plastics of polystyrene,polyethylene and polyurethane without prior comminution and densification.The biodegradation processes involving oxidation,cleavage and depolymerization of plastics were all demonstrated.Furthermore,foam plastic type-dependent functional microbes and enzymes that contributed to the efficient plastic degradationwere identified.Thiswork provides valuable insights into the practical applications of insects for sustainable plastics biodegradation. 展开更多
关键词 plastics biodegradation Tenebrio molitor larvae Rearing factors Growth performance Gut microbiome
原文传递
Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate):Mechanisms and main factors of the degradation 被引量:2
2
作者 Haibo Ye Qianyu Li +2 位作者 Juan Li Didi Li Zhimin Ao 《Chinese Chemical Letters》 2025年第1期158-164,共7页
Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability propertie... Poly(butylene adipate-terephthalate)(PBAT),as one of the most common and promising biodegradable plastics,has been widely used in agriculture,packaging,and other industries due to its strong biodegradability properties.It is well known that PBAT suffers a series of natural weathering,mechanical wear,hydrolysis,photochemical transformation,and other abiotic degradation processes before being biodegraded.Therefore,it is particularly important to understand the role of abiotic degradation in the life cycle of PBAT.Since the abiotic degradation of PBAT has not been systematically summarized,this review aims to summarize the mechanisms and main factors of the three major abiotic degradation pathways(hydrolysis,photochemical transformation,and thermochemical degradation)of PBAT.It was found that all of them preferentially destroy the chemical bonds with higher energy(especially C-O and C=O)of PBAT,which eventually leads to the shortening of the polymer chain and then leads to reduction in molecular weight.The main factors affecting these abiotic degradations are closely related to the energy or PBAT structure.These findings provide important theoretical and practical guidance for identifying effective methods for PBAT waste management and proposing advanced schemes to regulate the degradation rate of PBAT. 展开更多
关键词 Biodegradable plastics PBAT Abiotic degradation Degradation mechanism
原文传递
Effects of Lignin-based Fully Biodegradable Plastic Film on Growth and Yield of Lettuce in the Open Field
3
作者 Hong WANG Haibin SHEN +1 位作者 Xiazhao JIN Xiaoqin CHEN 《Agricultural Biotechnology》 2025年第1期5-8,共4页
[Objectives]This study was conducted to investigate the effects of lignin-based fully biodegradable plastic film on the growth and quality of lettuce under open-field cultivation conditions.[Methods]In this experiment... [Objectives]This study was conducted to investigate the effects of lignin-based fully biodegradable plastic film on the growth and quality of lettuce under open-field cultivation conditions.[Methods]In this experiment,compared with bare soil,a polyethylene plastic film(PE)treatment and two lignin-based fully biodegradable plastic film treatments(LBF-0.01 and LBF-0.008)with different thicknesses were set to study the effects on the growth and quality of lettuce.[Results]During autumn cultivation in Shanghai,the thermal insulation performance and yield-increasing effect of the two degradable plastic films were consistent with those of PE film,and effectively met lettuce growth requirements,but treatment LBF-0.01was better than treatment LBF-0.008.Moreover,lignin-based fully biodegradable plastic film could significantly increase the contents of Vc,soluble sugar and carotenoids in lettuce,and treatment LBF-0.008 showed the best effect.It could be seen that under the experimental conditions,the two kinds of lignin-based biodegradable plastic films with different thicknesses could be applied to the cultivation of lettuce in the open field in Shanghai in autumn,and LBF-0.01 had the best effect of increasing temperature and increasing yield,while LBF-0.008 had the best effect of improving quality.[Conclusions]This study provides theoretical basis and technical support for the further application of lignin-based fully biodegradable plastic film. 展开更多
关键词 Fully biodegradable plastic film LIGNIN LETTUCE GROWTH QUALITY
在线阅读 下载PDF
UV-aging reduces the effects of biodegradable microplastics on soil sulfamethoxazole degradation and sul genes development
4
作者 Xuecong Sun Shaohua Tian +2 位作者 Lelan You Xu Huang Jian-Qiang Su 《Journal of Environmental Sciences》 2025年第4期422-431,共10页
In recent years,the biodegradable plastics has extensively used in industry,agriculture,and daily life.Herein,the effects of two biodegradable microplastics(BMPs),poly(butyleneadipate-co-terephthalate)(PBAT)and polyhy... In recent years,the biodegradable plastics has extensively used in industry,agriculture,and daily life.Herein,the effects of two biodegradable microplastics(BMPs),poly(butyleneadipate-co-terephthalate)(PBAT)and polyhydroxyalkanoate(PHA),on soil sulfamethoxazole(SMX)degradation and sul genes development were comparatively studied based on the type,dosage,and state.The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT>PHA and high dose>low dose.Meanwhile virgin PBAT significantly reduced soil pH.In general,the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes,with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes.The driving effects of BMPs on soil microbial diversity following the same order as that on DOC.Specific bacteria stimulated by BMPs,such as Arthrobacter and two genera affiliated with phylum TM7,accounted for the accelerated degradation of SMX.Intriguingly,UV-aging hindered the release of DOC from BMPs and the reduction in pH,mitigated the stimulation of microbial communities,and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation.Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk. 展开更多
关键词 Biodegradable plastics UV-aging Antibiotics degradation Antibiotic resistance genes Microbial community
原文传递
Banana Peel and Beyond:Transforming Agricultural Waste into Eco-Friendly,Biodegradable Plastics
5
作者 Nageswara Rao Lakkimsetty Lakshmi Jayanthi Juturi +5 位作者 Amarender Reddy Kommula Clement Varaprasad Karu Naladi Ram Babu Dadapeer Doddamani G.Kavitha Rakesh Namdeti 《Journal of Environmental & Earth Sciences》 2025年第5期17-29,共13页
The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based pl... The management of agricultural wastes is essential for resource conservation and environmental sustainability.Due to escalating worries regarding plastic pollution and the surging expenses linked to petroleum-based plastics,there has been a notable transition towards the creation of biodegradable alternatives sourced from natural materials.Biofibres and bioplastics,especially those derived from agricultural waste,have garnered significant attention for their prospective uses in food packaging,biomedical sciences,and sustainable manufacturing.This study examines the viability of employing banana peel as a natural and environmentally sustainable raw material for the production of biodegradable bioplastic sheets.Due to its abundant polysaccharides and lignocellulosic fibers,banana peel presents advantageous structural and mechanical characteristics for bioplastic manufacturing.Experimental findings demonstrate that bioplastic derived from banana peels has enhanced biodegradability and environmental compatibility relative to traditional synthetic plastics,positioning it as a feasible alternative to mitigate the worldwide plastic waste epidemic.An optimal formulation was constructed using Design Expert software,comprising 55.38 g of banana peel,27.63 g of fish scales,and 20 g of chitosan powder.This formulation improves the film’s tensile strength,flexibility,and degradation rate,ensuring its efficacy in industrial applications including food packaging and molding.The study’s results highlight the promise of bioplastics made from banana peels as an economical and sustainable alternative,decreasing dependence on petroleum-based plastics and alleviating environmental pollution. 展开更多
关键词 Biodegradable plastics Banana Peel Fish Scale CHITOSAN Design Expert Software
在线阅读 下载PDF
Valorization of poly-β-hydroxybutyrate(PHB)-based bioplastic waste in anaerobic digesters of food waste for bioenergy generation:reactor performance,microbial community analysis,and bioplastic biodegradation
6
作者 Le Zhang To-Hung Tsui +2 位作者 Jiahua Fu Yanjun Dai Yen Wah Tong 《Carbon Neutrality》 2022年第1期523-536,共14页
This study aims to investigate the significance and biodegradation pathways of PHB-based bioplastic in anaerobic digesters treating food waste,where the reactor performance of changed methane generation,bioplastic bio... This study aims to investigate the significance and biodegradation pathways of PHB-based bioplastic in anaerobic digesters treating food waste,where the reactor performance of changed methane generation,bioplastic biodegradation efficiency,and bioinformatic analysis of functional microbes were emphasized.The results showed that PHB-based plastic film could be partially biodegraded in the food waste digester,and a bioaugmentation use of Alcaligenes Faecalis(AF)and Bacillus Megaterium(BM)was beneficial to largely accelerate the degradation process through a beneficial shift of both the functional bacterial and archaeal species.Microbial community analysis indicated that the major bacterial species belonged to genera Candidatus_Cloacimonas,Rikenellaceae,and Defluviitoga,while the dominant methanogenic archaeal species belonged to genera Methanomassiliicoccus,Methanosarcina,and Methanosaeta.Bioplastic biodegradation analysis suggested that the optimal fractions of AF and BM for PHB-based plastic degradation were 50% AF and 75% BM,respectively,which deserves further optimization and scale-up validation.The finding of this study would contribute to the combined management of PHB-based bioplastic with food waste for clean energy recovery and a greener environment. 展开更多
关键词 Anaerobic digestion Biodegradable plastic Waste management Energy recovery Bioinformatic analysis Poly-β-hydroxybutyrate(PHB)
在线阅读 下载PDF
Global material pulse:Q22025 highlights from leading Chinese-US universities
7
《China Textile》 2025年第4期17-18,共2页
Tongji University:Recombination of agricultural residues into moldable composites Increasing efforts have been devoted to developing biobased and biodegrad-able plastics and composites from lig-nocellulosic biomass.Cu... Tongji University:Recombination of agricultural residues into moldable composites Increasing efforts have been devoted to developing biobased and biodegrad-able plastics and composites from lig-nocellulosic biomass.Current bioplastic production entails multiple challenging steps including monomer production from biomass as well as polymer synthesis and modification.Here,the research team led by Professor Lei Zhendong and Wu Deli at Tongji University reports a pr actical recom-bination strategy to transform agricultural residues into moldable cellulose-reinforced lignin(CRL)composites. 展开更多
关键词 cellulose reinforced lignin composites recycling agricultural residues moldable composites bioplastic production monomer production agricultural residues lignocellulosic biomass biodegradable plastics
在线阅读 下载PDF
Photocatalytic production of high-value-added fuels from biodegradable PBAT by Nb_(2)O_(5)/GCN heterojunction catalyst:Performance and mechanism
8
作者 Runzi Cao Heng Shao +3 位作者 Xinjie Wang Jian Wang Enxiang Shang Yang Li 《Chinese Chemical Letters》 2025年第7期293-301,共9页
Photocatalysis holds great promise for the conversion of plastic waste into valuable chemicals.However,the conversion efficiency is constrained by the poor carriers’separation efficiency over the single component pho... Photocatalysis holds great promise for the conversion of plastic waste into valuable chemicals.However,the conversion efficiency is constrained by the poor carriers’separation efficiency over the single component photocatalyst.Herein,we synthesized a novel typeⅡNb_(2)O_(5)/GCN heterojunction to investigate its efficiency in the photocatalytic upcycling of polybutylene adipate/terephthalate(PBAT)microplastics(MPs)into acids and alcohols under visible light irradiation(100mW/cm^(2)).The findings indicate that the charge transfer within the typeⅡNb_(2)O_(5)/GCN occurs from the conduction band of GCN to the conduction band of Nb_(2)O_(5),thereby enhancing the separation efficiency of carriers Notably,the rates of ethanol and acetic acid generation from 1.5mg/mL PBAT MPs treated with the 60%Nb_(2)O_(5)/GCN photocatalyst were 21.8-fold and 1.8-fold higher,respectively,compared to those by Nb_(2)O_(5) alone.Density functional theory calculations demonstrate that the hydroxyl radicals(·OH)produced by the Nb_(2)O_(5)/GCN heterojunction cleaves the ester bond(O-C=O)of PBAT MP into the monomer.These monomers are subsequently converted into acids and alcohols through various reactions,including C-C bond cleavage,hydrodeoxygenation,and C-C bond coupling.This study highlights the effectiveness of heterojunction photocatalyst in converting PBAT MPs into valuable chemicals,thus significantly promoting advancements in bioplastics recycling. 展开更多
关键词 Nb_(2)O_(5)/GCN heterojunction Photocatalytic recycling Biodegradable plastics ALCOHOLS Acids
原文传递
Knowledge and Opportunities from the Plastisphere:A Prelude for the Search of Plastic Degrading Bacteria on Coastal Environments
9
作者 Luis Felipe Aviles-Ramirez Joanna M.Ortiz-Alcantara Ma.Leticia Arena-Ortiz 《Sustainable Marine Structures》 2021年第2期15-25,共11页
Plastic pollution has become an urgent issue,since its invasion to everyecosystem has led to multiple impacts on the environment and human pop-ulations.Certain microbial strains and genera had shown the ability to bio... Plastic pollution has become an urgent issue,since its invasion to everyecosystem has led to multiple impacts on the environment and human pop-ulations.Certain microbial strains and genera had shown the ability to bio-degrade plastic sources under laboratory conditions.In this minireview,wecallect and analyze scientific papers and reports of this microbial activity aswe contextualize this information on the global plastic pollution problem,toprovide an updated state of the art of plastiq/biodegradation with microbialagents.Along with a broad understanding of the general process of plasticbiadegraclation hosted by micrnarganisms.The contributions of this mini-revicw came from the identification of rescarch gaps,as well as proposalsfor new approaches.One of the main proposals focuses on coastal environ-nents and in particular coastal wetlands as a great microbiome source withpatential for plastic biodegradation,whether reported or undiscovered.Ourfinal proposal consists of the application of this knowledge into technologictools and strategies that have a remarkable impact on the battle against theplastic pollution problem. 展开更多
关键词 plastic biodegradation BACTERIA Plastisphere BIOREMEDIATION Coastal environments
在线阅读 下载PDF
Warpage and Shrinkage Optimization of Injection-Molded Plastic Spoon Parts for Biodegradable Polymers Using Taguchi, ANOVA and Artificial Neural Network Methods 被引量:29
10
作者 Erfan Oliaei Behzad Shiroud Heidari +4 位作者 Seyed Mohammad Davachi Mozhgan Bahrami Saeed Davoodi Iman Hejazi Javad Seyfi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期710-720,共11页
In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- perime... In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds. 展开更多
关键词 Injection molding simulation Yaguchi Artificial neural networks Biodegradable plastic Disposable spoons
原文传递
Life Cycle Assessment of Biodegradable Plastics 被引量:1
11
作者 SAKAMOTO Yuki 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第3期327-329,共3页
Many industrial products made from fossil fuels cause the problems of global warming,depletion of fossil fuel resources and decrease of the land by landfill.In this report,the amounts of CO2 emissions as the environme... Many industrial products made from fossil fuels cause the problems of global warming,depletion of fossil fuel resources and decrease of the land by landfill.In this report,the amounts of CO2 emissions as the environmental load and the specific energy consumptions as the depletion of fossil fuel resources of biodegradable plastics and conventional plastic as food trays are compared using life cycle assessment methodology.The amount of CO2 emission of PHB(poly(3-hydroxybutyrate-co-4-hydroxybutyrate)) tray was the smallest among those of trays of other plastics.The specific energy consumption of SPCL(starch/polycaprolactone) was the smallest among those of trays of other plastics.It clearly reveals that the utilization of the biodegradable plastics is an effective way of alternatives of the conventional plastics. 展开更多
关键词 life cycle assessment biodegradable plastics CO2 emission specific energy consumption
原文传递
A Literature Review on Sustainability of Bio-Based and Biodegradable Plastics:Challenges and Opportunities
12
作者 Taofeeq D.Moshood Gusman Nawanir +3 位作者 Fatimah Mahmud Fazeeda Mohamad Mohd Hanafiah Ahmad Airin AbdulGhani 《Energy Engineering》 EI 2022年第4期1611-1647,共37页
This study examines the literature on bio-based and biodegradable plastics published between 2000 and 2021 and provides insights and research suggestions for the future.The study gathers data from the Scopus and ISI W... This study examines the literature on bio-based and biodegradable plastics published between 2000 and 2021 and provides insights and research suggestions for the future.The study gathers data from the Scopus and ISI Web of Science databases,then picks 1042 publications objectively and analyses their metadata.Furthermore,144 papers from the Web of Science are analysed to present insights and classifications of the literature based on content analyses,including assessment/evaluation of the sustainability of bio-based and biodegradable Plastics,sustainability of biodegradable Plastics,and factors driving the uptake of biodegradable plastics.The study finds that most research on bio-based and biodegradable plastic film evaluations considered only one dimension of sustainability,few considered two dimensions,and very few considered three dimensions.Though,in recent years,academic and industrial interest has grown dramatically in biodegradable plastics towards sustainability.The triple bottom line method in this report(economic benefit,social responsibility,and environmental protection)was employed to assess the biodegradable plastics towards sustainability.Top journals,Influential authors,top contributing institutions,top contributing nations,and contributions by fields are all identified in this study.This research gives a detailed but straightforward theoretical design of bio-based and biodegradable polymers.The study’s results and future research initiatives provide a new path for further investigation and contribution to the field. 展开更多
关键词 Biodegradable plastic bioplastic influential factors life cycle assessment biopolymers triple bottom line(TBL)
在线阅读 下载PDF
可生物降解塑料取代传统塑料--对碳排放的影响 被引量:4
13
作者 Guanyi Chen Jianyuan Li +11 位作者 Yunan Sun Zhi Wang Gary ALeeke Christian Moretti Zhanjun Cheng Yuan Wang Ning Li Lan Mu Jinyu Li Junyu Tao Beibei Yan Li'an Hou 《Engineering》 SCIE EI CAS CSCD 2024年第1期152-162,共11页
In recent years,a great deal of attention has been focused on the environmental impact of plastics,includ-ing the carbon emissions related to plastics,which has promoted the application of biodegradable plas-tics.Coun... In recent years,a great deal of attention has been focused on the environmental impact of plastics,includ-ing the carbon emissions related to plastics,which has promoted the application of biodegradable plas-tics.Countries worldwide have shown high interest in replacing traditional plastics with biodegradable plastics.However,no systematic comparison has been conducted on the carbon emissions of biodegrad-able versus traditional plastic products.This study evaluates the carbon emissions of traditional and biodegradable plastic products(BPPs)over four stages and briefly discusses environmental and economic perspectives.Four scenarios-namely,the traditional method,chemical recycling,industrial composting,and anaerobic digestion-are considered for the disposal of waste BPPs(WBPPs).The analysis takes China as a case study.The results show that the carbon emissions of 1000traditional plastic products(plastic bags,lunch boxes,cups,etc.)were52.09-150.36 carbon emissions equivalent of per kilogram(kg CO_(2)eq),with the stage of plastic production contributing 50.71%-50.77%.In comparison,1000 similar BPPs topped out at 21.06-56.86 kg CO_(2)eq,approximately 13.53%-62.19%lower than traditional plastic prod-ucts.The difference was mainly at the stages of plastic production and waste disposal,and the BPPs showed significant carbon reduction potential at the raw material acquisition stage.Waste disposal plays an important role in environmental impact,and composting and anaerobic digestion are considered to be preferable disposal methods for WBPPs.However,the high cost of biodegradable plastics is a challenge for their widespread use.This study has important reference significance for the sustainable development of the biodegradableplastics industry. 展开更多
关键词 Carbon emissions Biodegradable plastics Different disposal scenarios Daily life consumption Environmental and economic discussion
在线阅读 下载PDF
Efficient synthesis of hydroxyl functioned polyesters from natural polyols and sebacic acid 被引量:5
14
作者 Zhuo Yuan Ning Qing Shan Zhang Qin Pei Wu Yun Zheng Li Dong Xia Ma Jia Zhe Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第6期635-638,共4页
Amphiphilic hydroxyl functioned polyester(HFP) can be used as compatibilizers for blends of starch and resins.We developed a synthetic method for effective preparation of HFPs.Water was removed by high flow rate N_2... Amphiphilic hydroxyl functioned polyester(HFP) can be used as compatibilizers for blends of starch and resins.We developed a synthetic method for effective preparation of HFPs.Water was removed by high flow rate N_2 rather than high vacuum during polycondensation of sebacic acid with xylitol,sorbitol,or mannitol in the presence of dehydrative condensation catalyst and the product is with[η]of 27.2 mL/g,M_n of 1903,M_w of 167,693,T_g of -30.5℃,T_m of 44.0℃.Weight loss is 1.73%under 200℃. The integral distributions of molecular weight are 43.6 wt%and 63.8 wt%over 10,000 and 3000,respectively.The results indicated that higher molecular weight HFP was economically synthesized. 展开更多
关键词 Hydroxyl functioned polyester Poly(sorbitol sebacate) Dehydrative condensation catalyst Biodegradable plastics
原文传递
Effects of biodegradable mulch on soil water and heat conditions,yield and quality of processing tomatoes by drip irrigation 被引量:4
15
作者 JIA Hao WANG Zhenhua +4 位作者 ZHANG Jinzhu LI Wenhao REN Zuoli JIA Zhecheng WANG Qin 《Journal of Arid Land》 SCIE CSCD 2020年第5期819-836,共18页
To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in... To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in Urumqi,Northwest China.Four types of biodegradable mulches,traditional plastic mulchs and a control group(bare land;referred to as CK)were compared,including a total of six different treatments.Effects of mulching on soil water and heat conditions as well as the yield and quality of processing tomatoes under drip irrigation were examined.In addition,a comparative analysis of economic benefits of biodegradable mulches was performed.Principal component analysis and gray correlation analysis were used to evaluate suitable mulching varieties for planting processing tomatoes under drip irrigation.Our results show that,compared with CK,biodegradable mulches and traditional plastic mulch have a similar effect on retaining soil moisture at the seedling stage but significantly increase soil moisture by 0.5%-1.5%and 1.5%-3.0%in the middle and late growth periods(P<0.050),respectively.The difference in the thermal insulation effect between biodegradable mulch and plastic mulch gradually reduces as the crop grows.Compared with plastic mulch,the average soil temperature at 5-20 cm depth under biodegradable mulches is significantly lowered by 2.04°C-3.52°C and 0.52°C-0.88°C(P<0.050)at the seedling stage and the full growth period,respectively,and the water use efficiency,average fruit yield,and production-investment ratio under biodegradable mulches were reduced by 0.89%-6.63%,3.39%-8.69%,and 0.51%-6.33%(P<0.050),respectively.The comprehensive evaluation analysis suggests that the black oxidized biological double-degradation ecological mulch made from eco-benign plastic is the optimal film type under the study condition.Therefore,from the perspective of sustainable development,biodegradable mulch is a competitive alternative to plastic mulch for large-scale tomato production under drip irrigation in the oasis. 展开更多
关键词 biodegradable plastic mulch processing tomato water use efficiency soil water and heat comprehensive evaluation regional agricultural sustainability XINJIANG
在线阅读 下载PDF
Influence of temperature on production of lactic acid from kitchen garbage 被引量:3
16
作者 汪群慧 徐忠 +2 位作者 孟令辉 孙晓红 王旭明 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第2期195-199,共5页
The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, an... The production of lactic acid from kitchen garbage, the precursor for production of biodegradable plastics is described in detail. The influence of temperature on the lactic acid concentration, sugar concentration, and decrement of garbage were evaluated through experiments. Fermentation were carried out in an incubator at 5, 25, 37 and 50 ℃. The latic acid produced was maximum at initial pH 6.0 and 37 ℃, i.e. 38 g/L with a yield of 0.23 g/gVS. It is concluded from the experimental results that temperature has quite a considerable effect on the production of lactic acid; lactic acid concentration increases with temperature until 37 ℃, and production rate of lactic acid drops at 50 ℃; the optimal fermentation is 37 ℃. This study shows that production of lactic acid from kitchen garbage is feasible and reduction of garbage can be realized. 展开更多
关键词 lactic acid garbage treatment biodegradable plastics kitchen garbage
在线阅读 下载PDF
Evaluation of Mechanical Properties of Highly Filled Jute Fiber Reinforced Composites
17
作者 Takao Ota 《材料科学与工程(中英文A版)》 2023年第4期104-111,共8页
This study aims for development of highly filled jute fiber reinforced composites that contains jute fiber over fiber weight fraction 60%,and jute fiber reinforced composite was fabricated by the hot-pressing method.T... This study aims for development of highly filled jute fiber reinforced composites that contains jute fiber over fiber weight fraction 60%,and jute fiber reinforced composite was fabricated by the hot-pressing method.The molding temperature was changed from 175°C to 230°C,to investigate the effect of molding temperature on the mechanical properties of jute fiber reinforced composites.The effect of surface treatment of jute fiber on the mechanical properties of jute fiber reinforced composites was also investigated.As a result,the jute fiber reinforced composites using surface treated fiber has low porosity,and the jute fiber reinforced composite having low porosity has high flexural strength and modulus.The jute fiber reinforced composite using acetone treated fiber molded at 200°C has the maximum flexural strength and modulus. 展开更多
关键词 Natural fiber biodegradable plastics high fiber weight fraction surface treatment mechanical properties.
在线阅读 下载PDF
Characterization of 3D Printed Poly(3-Hydroxybutyric-Co-3-Hydroxyvalerate) by Fused Granular Fabrication through Thermal and Mechanical Analyses
18
作者 Lok-Ching Wu Cheng-Hao Lee +2 位作者 Yanming Wang Yaohui Liu Chi-Wai Kan 《Journal of Materials Science and Chemical Engineering》 2023年第12期54-63,共10页
Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a custo... Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. . 展开更多
关键词 Additive Manufacturing 3D Printing Biodegradable plastic Fused Gran-ular Manufacturing Poly[R-3-Hydroxybutyrate-Co-(R-3-Hydroxyvalerate)]
在线阅读 下载PDF
Gastric carboxylesterases of the edible crab Cancer pagurus (Crustacea, Decapoda) can hydrolyze biodegradable plastics
19
作者 Lukas Miksch Lars Gutow Reinhard Saborowski 《Emerging Contaminants》 CSCD 2024年第1期80-89,共10页
A promising strategy to counteract the progressing plastic pollution of the environment can involve the replacement of persistent plastics with biodegradable materials.Biodegradable polymers are enzymatically degradab... A promising strategy to counteract the progressing plastic pollution of the environment can involve the replacement of persistent plastics with biodegradable materials.Biodegradable polymers are enzymatically degradable by various hydrolytic enzymes.However,these materials can reach the environment in the same way as conventional plastics.Therefore,they are accessible to terrestrial,freshwater,and marine biota.Once ingested by marine organisms,highly active enzymes in their digestive tracts may break down biodegradable compounds.We incubated microparticles of five different biodegradable plastics,based on polylactictic acid(PLA),polybutylene succinate(PBS),polybutylene adipate terephthalate(PBAT)and polyhydroxybutyrate-co-valerate(PHBV),in-vitro with the gastric fluid of the edible crab Cancer pagurus and evaluated the hydrolysis rates by pH Stat titration.A plastic blend of PLA with PBAT showed the highest hydrolysis rate.The enzymes in the gastric fluid of crabs were separated by anion exchange chromatography.Fractions with carboxylesterase activity were identified using fluorescent methylumbelliferyl(MUF)-derivatives.Pooled fractions with high carboxylesterase activity also hydrolyzed a PLA/PBAT plastic blend.Carboxylesterases showed molecular masses of 40–45 kDa as determined by native gel electrophoresis(SDS-PAGE).Our study demonstrated that digestive carboxylesterases in the gastric fluid of C.pagurus exhibit a high potential for hydrolyzing certain biodegradable plastics.Since esterases are common in the digestive tract of organisms,it seems likely that other invertebrates possess the ability to hydrolyze biodegradable plastics. 展开更多
关键词 Biodegradable plastics Microplastics Crustaceans Ingestion ENZYMES Enzymatic degradation
原文传递
Production and characterization of seaweed-based bioplastics incorporated with chitin from ramshorn snails
20
作者 Regina Zhi Ling Leong Swee Sen Teo +5 位作者 Hui Yin Yeong Swee Pin Yeap Phei Er Kee Su Shiung Lam John Chi-Wei Lan Hui Suan Ng 《Systems Microbiology and Biomanufacturing》 2024年第3期1096-1105,共10页
Petroleum-based plastics have been associated with several environmental issues,including land and water pollution,green-house gas emissions,and waste accumulation due to their non-biodegradable properties.Bioplastics... Petroleum-based plastics have been associated with several environmental issues,including land and water pollution,green-house gas emissions,and waste accumulation due to their non-biodegradable properties.Bioplastics derived from renewable natural resources have emerged as an eco-friendly substitute for conventional plastics,leading to a reduced carbon footprint and conservation of non-renewable fossil fuels.Seaweed is an attractive material for bioplastic production due to its abundant polysaccharide content,high biomass,rapid growth rate and suitability for consumption.This work aimed to explore the fea-sibility of producing seaweed bioplastics,specifically starch and carrageenan from Kappaphycus alvarezii,along with chitin extracted from ramshorn snails(Planorbarius corneus).The surface morphology of the bioplastics was assessed through scanning electron microscopy(SEM),and their biodegradability was also examined through a soil burial biodegradation test.Starch-based bioplastics incorporated with carrageenan and chitin exhibited a more substantial network structure,rougher surface texture and smaller void sizes with improved mechanical strength and water barrier properties.The bioplastics under-went decomposition,resulting in fragmentation into small pieces(with more than 76%weight loss)or complete degradation through the enzymatic activity of Acinetobacter spp.and Burkholderia cepacia.Therefore,seaweed-chitin-based bioplastics demonstrate their potential as a sustainable and environmentally friendly alternative to conventional plastics. 展开更多
关键词 BIOplasticS SEAWEED CHITIN CARRAGEENAN Biodegradable plastics
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部