The hydrodynamic performance of high-speed planing hulls has gained considerable interest,with recent advancements in computational fluid dynamics and hull design techniques enhancing the understanding of planing hull...The hydrodynamic performance of high-speed planing hulls has gained considerable interest,with recent advancements in computational fluid dynamics and hull design techniques enhancing the understanding of planing hull hydrodynamics.In this study,we conducted a numerical investigation using the Reynolds-averaged Navier-Stokes approach with overset grids to capture large motions at high speeds.This study aims to improve the hydrodynamic performances of planing hulls,specifically focusing on total resistance,trim,and sinkage.The initial Fridsma hull with a deadrise angle of 20°has been used for validation,demonstrating good agreement with measurements at different Froude numbers.Subsequently,new configurations based on the Fridsma hull have been designed by varying the deadrise angle,number of chines,and transverse steps.Our findings reveal a correlation between the deadrise angle,the number of chines,and the Froude number.As the deadrise angle increases,total resistance also increases.Additionally,a single chine yields superior results at higher Froude numbers,while multiple chines offer advantages at lower values.The introduction of transverse steps consistently increases total resistance,highlighting their role in improving planing hull performance.This research not only offers valuable insights into planing hull design but also leverages state-of-the-art numerical methods to advance the understanding of hydrodynamic behaviors at high ship speeds.展开更多
A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled pl...A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled planing hull are carried out.The resistance tests of models with three dif ferent masses(127.4 kg,159.5 kg,202.9 kg)are conducted for the Froude number in the range of 0.761≤Fn≤1.925.The results of resistance measured by towing tank imply that the tunneled planing hull with a larger displacement has a superior resistance performance.The numerical simulation of Reynolds Average Navier Stokes(RANS)equations based on the finite volume method is performed to analyze the hull characteristics in calm water(M=159.5 kg)with two degrees of freedom(sinkage and trim).The numerical results are compared with the experimental data,which shows good agreement.Pressure distribution,wave profiles and lift forces obtained by SST k-ωand Realizable k-εturbulence models are compared and discussed.Finally,the local fluid flow of streamline around the hull can be divided into four regions due to the presence of a tunnel,which is different from the behaviors of the conventional planing monohull with prismatic form.展开更多
High-speed planing crafts have successfully evolved through developments in the last several decades.Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provid...High-speed planing crafts have successfully evolved through developments in the last several decades.Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provide general understanding for practical design.However,sometimes such analyses suffer inaccuracies since the air–water interface effects,especially in the transition phase,are not fully accounted for.Hence,understanding the behaviour at the transition speed is of fundamental importance for the designer.The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz.,knuckles,chines and transom,with resultant spray generation.In such cases,the application of potential theory at high speeds introduces limitations.This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air–water interface effects,with validations through experiments to compare the drag,dynamic trim and wetted surface area.The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air–water interface effects.The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests.It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids.Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag,and their ability to capture the spray resulting from the air–water interaction.The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air–water interface,drag at the pre-planing and full planing range and dynamic trim angles.展开更多
Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the h...Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method(CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes(RANS) equations.The volume of fluid(VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds.展开更多
In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-st...In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-step hulls of Cougar planing craft are evaluated under different distances of the second step and LCG from aft,weight loadings,and Froude numbers(Fr).Our CFD results are appropriately validated against our conducted experimental test in National Iranians Marine Laboratory(NIMALA),Tehran,Iran.Then,the hydrodynamic resistance of intended planing crafts under various geometrical and physical conditions is predicted using artificial neural networks(ANNs).CFD analysis shows two different trends in the growth rate of resistance to weight ratio.So that,using steps for planing craft increases the resistance to weight ratio at lower Fr and decreases it at higher Fr.Additionally,by the increase of the distance between two steps,the resistance to weight ratio is decreased and the porpoising phenomenon is delayed.Furthermore,we obtained the maximum mean square error of ANNs output in the prediction of resistance to weight ratio equal to 0.0027.Finally,the predictive equation is suggested for the resistance to weight ratio of stepped planing craft according to weights and bias of designed ANNs.展开更多
In order to minimize the harm caused by the instability of a planing craft, a motion prediction model is essential. This paper analyzed the feasibility of using an MGM(1,N) model in grey system theory to predict pla...In order to minimize the harm caused by the instability of a planing craft, a motion prediction model is essential. This paper analyzed the feasibility of using an MGM(1,N) model in grey system theory to predict planing craft motion and carried out the numerical simulation experiment. According to the characteristics of planing craft motion, a recurrence formula was proposed of the parameter matrix of an MGMfl,N) model. Using this formula, data can be updated in real-time without increasing computational complexity significantly. The results of numerical simulation show that using an MGM(1,N) model to predict planing motion is feasible and useful for prediction. So the method proposed in this study can reflect the planing craft motion mechanism successfully, and has rational and effective functions of forecasting and analyzing trends.展开更多
Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around...Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.展开更多
Objective: To assess the short-term effect of scaling and root planing (SRP) and essential-oils mouthwash on the levels of specific bacteria in Chinese adults. Methods: Fifty Chinese adults with chronic periodontitis ...Objective: To assess the short-term effect of scaling and root planing (SRP) and essential-oils mouthwash on the levels of specific bacteria in Chinese adults. Methods: Fifty Chinese adults with chronic periodontitis were randomly assigned to full-mouth SRP or a 7-d essential-oils mouthwash regimen. In addition, 22 periodontally healthy adults used essential-oils mouthwash for 7 d. Clinical examination and plaque/saliva sampling were performed at baseline and on Day 7. Quantitative real-time polymerase chain reaction (PCR) was used to measure Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), and total bacterial loads in saliva, supra- and sub-gingival plaque samples. Results: The detection frequencies of four tested species remained unchanged after either treatment. However, the bacterial loads of Fn, Pg, and Pi were significantly reduced by SRP; the mean reduction of bacterial counts in saliva ranged from 52.2% to 62.5% (p<0.01), in supragingival plaque from 68.2% to 81.0% (p<0.05), and in subgingival plaque from 67.9% to 93.0% (p<0.01). Total bacterial loads were reduced after SRP in supra- and sub-gingival plaque (p<0.05). Essential-oils mouthwash reduced Fn levels in supragingival plaque by a mean of 53.2%, and reduced total bacterial loads in supra- and sub-gingival plaque (p<0.01). In subgingival plaque from periodontal patients, Pg and Pi reductions were high after SRP compared to essential-oils mouthwash (93.0% vs. 37.7% and 87.0% vs. 21.0%, p<0.05). No significant bacterial reduction was observed in periodontally healthy subjects using essential-oils mouthwash. Conclusions: SRP and essential-oils mouthwash both have an impact on saliva and gingival plaque flora in Chinese periodontitis patients in 7 d, with greater microbiological improvement by SRP.展开更多
This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method. Th...This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method. The numerical method for computation of the induced pressure and lift is potential-based boundary element method. Special technique is identified to present upwash geometry and to determine the spray drag. Numerical results of a planing flat plate and planing craft model 4666 are presented. It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude numbers.展开更多
High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong c...High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong coupling between rigid body motions and hydrodynamic analysis. In addition, free surface should be predicted with good accuracy for each time step. In this paper, velocity and pressure fields are coupled by use of the fractional step method. On the basis of in- tegration of the two-phase viscous flow induced stresses over the hull, acting loads (forces and moments) are calculated. With the strategy of boundary-fitted body-attached mesh and calculation of 6-DoF motions in each time step, time history of ship motions including displacements, speeds and accelerations are evaluated. For the demonstration of the software capabilities, circular cylinder slamming is simulated as a simple type of water slamming. Then, a high-speed planing catamaran is investigated in the case of steady forward motion. All of the results are in good concordance with experimental data. The present method can be widely implemented in design as well as in the performance prediction of high-speed vessels.展开更多
The purpose of this research study was to examine the attitude response of a planing craft under the controllable hydrofoils.Firstly,a non-linear longitudinal attitude model was established.In the mathematical model,e...The purpose of this research study was to examine the attitude response of a planing craft under the controllable hydrofoils.Firstly,a non-linear longitudinal attitude model was established.In the mathematical model,effects of wind loads were considered.Both the wetted length and windward area varied in different navigation conditions.Secondly,control strategies for hydrofoils were specified.Using the above strategies,the heave and trim of the planing craft was adjusted by controllable hydrofoils.Finally,a simulation program was developed to predict the longitudinal attitudes of the planing craft with wind loads.A series of simulations were performed and effects of control strategies on longitudinal attitudes were analyzed.The results show that under effects of wind loads,heave of fixed hydrofoils planing craft decreased by 6.3%,and pitch increased by 8.6% when the main engine power was constant.Heave decreased by less than 1% and trim angle decreased by 1.7% as a result of using variable attack angle hydrofoils;however,amplitude changes of heave and pitch were less than 1% under the control of changeable attack angle hydrofoils and longitudinal attitude.展开更多
To forecast the modification and evolution of a residual stress field in a butt-welded plate, the residual stress field was numerically evaluated by a finite element method code. The plate was originated by welding an...To forecast the modification and evolution of a residual stress field in a butt-welded plate, the residual stress field was numerically evaluated by a finite element method code. The plate was originated by welding and suffered after chip- forming machining. The residual stress field was taken as a pre-stress condition for the next cutting simulations. Residual stress distribution after machining was then compared to that in the initial residual stress field. Numerical results have been compared to experimental measurements. That shows the potentiality as well as the limitations of numerical techniques. Three major contributions are summarized as follows : Longitudinal residual stress distribution in welded plates is deeply changed by mechanical tooling; Planing and cutting increases peak values of transversal residual stress and in general introduces some unevenness in distribution along X-direction; Comparison of experimental and numerical values is generally satisfactory for longitudinal residual stress.展开更多
The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., ...The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., but without substantially modifying the traditional forms of hull. The hull patented Monotricat high hydrodynamic efficiency and energy saving it represents an evolution of the traditional architectures of the hulls, as its shape is adapted to recover wave formation engendered from the bow and sprays associated with it so as to reduce the resistance to the benefit of the speed, and navigating in displacement at speeds of planing hulls with an efficiency of about 20%. The patented hull Monotricat represents the overcoming of distinction between displacement and planing hulls, because, unlike previous solutions, the hull conventionally called Monotricat is the first displacement hull that can navigate at both displacement and planning speeds, with a resistance curve almost straight, maintaining the characteristics of a displacement hull, since it combines the characteristics of displacement and planning hull. It presents an innovative architecture that could be defined as a hybrid between a monohull and catamaran, navigating on spray self-produced. The combination of these three types of naval hulls allows it to ensure: safety, comfort navigation, best seakeeping and maneuverability in restricted waters, stability, reduction of resistance to motion, cost management, regularity on the routes even in adverse weather-sea. These characteristics of the hull have been studied, tested and validated by leading research institutes and universities with more ameliorative results in each subsequent experimentation, reported in the present work, which demonstrated a greater hydrodynamic efficiency compared to conventional hulls of 20%.展开更多
Based on the research, simulation and experimental investigation of Basilisk Lizard running on the water surface, and similar experimental investigation of the craft models and practical crafts running on the water su...Based on the research, simulation and experimental investigation of Basilisk Lizard running on the water surface, and similar experimental investigation of the craft models and practical crafts running on the water surface for about 30 years. The Bionic Lizard Flying Wheel Planing Craft was created and invented. This paper describes the evolution, experimental investigation, test results, design features, advantages, applications, and prospect of the innovation, which denotes the craft with excellent speed performance (high speed, extra STOL (short take-off and landing distance) and VTOL(vertical take-off and landing) characteristics, good transverse and longitudinal stability, super shallow water draft, high propulsion efficiency at high speed without cavitations obstacle, low external field noise, small dimension, simple configuration and structure, good economy, nice transportation efficiency, and possibly is first of these kinds in the HPMV (High Performance Marine Vessels) family around the world.展开更多
The demand for high-speed boats that operating near to shoreline is increasing nowadays.Understanding the behavior and attitude of high-speed boats when moving in different waterways is very important for boat designe...The demand for high-speed boats that operating near to shoreline is increasing nowadays.Understanding the behavior and attitude of high-speed boats when moving in different waterways is very important for boat designer.This research uses a CFD(Computational Fluid Dynamics)analysis to investigate the shallow water effects on prismatic planing hull.The turbulence fl ow around the hull was described by Reynolds Navier Stokes equations RANSE using the k-ɛturbulence model.The free surface was modelled by the volume of fl uid(VOF)method.The analysis is steady for all the ranges of speeds except those close to the critical speed range Fh=0.84 to 1.27 due to the propagation of the planing hull solitary waves at this range.In this study,the planing hull lift force,total resistance,and wave pattern for the range of subcritical speeds,critical speeds,and supercritical speeds have been calculated using CFD.The numerical results have been compared with experimental results.The dynamic pressure distribution on the planing hull and its wave pattern at critical speed in shallow water were compared with those in deep water.The numerical results give a good agreement with the experimental results whereas total average error equals 7%for numerical lift force,and 8%for numerical total resistance.The worst effect on the planing hull in shallow channels occurs at the critical speed range,where solitary wave formulates.展开更多
Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuver...Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions.展开更多
This paper studies the hydrodynamic performance of a channel type planing trimaran. A numerical simulation is carried out based on a RANS-VOF solver to analyze the hydrodynamic performance of the channel type planing ...This paper studies the hydrodynamic performance of a channel type planing trimaran. A numerical simulation is carried out based on a RANS-VOF solver to analyze the hydrodynamic performance of the channel type planing trimaran. A series of hydrodynamic experiments in towing tank were carried out, in which both the running attitude and the resistance performance of the trimaran model were recorded. Some hydrodynamic characteristics of the channel type planning trimaran are shown by the results. Firstly, the resistance declines significantly, with the forward speed across the high-speed resistance peak due to the combined effects of the aerodynamic and hydrodynamic lifts. Secondly, the resistance performance is influenced markedly by the longitudinal positio- ns of centre of the gravity and the displacements. Besides, the pressure distribution on the hull and the two-phase flow in the channel are discussed in the numerical simulations.展开更多
In this paper, the fluid dynamic performance for a new boat form grooved planing boats is analyzed, and the results of resistance tests for seven grooved planing boat models of different types are presented in the for...In this paper, the fluid dynamic performance for a new boat form grooved planing boats is analyzed, and the results of resistance tests for seven grooved planing boat models of different types are presented in the form of curves of attack angle and resistance-weight ratio versus Froude number. According to these curves, the effect of some parameters of the boat type on the resistance is analyzed.展开更多
A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states...A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.展开更多
基金Supported by the UK Department for Transport,as part of the UK Shipping Office for Reducing Emissions(UK SHORE)Programme and the UK Engineering and Physical Sciences Research Council(EPSRC)[grant number EP/Y024605/1].
文摘The hydrodynamic performance of high-speed planing hulls has gained considerable interest,with recent advancements in computational fluid dynamics and hull design techniques enhancing the understanding of planing hull hydrodynamics.In this study,we conducted a numerical investigation using the Reynolds-averaged Navier-Stokes approach with overset grids to capture large motions at high speeds.This study aims to improve the hydrodynamic performances of planing hulls,specifically focusing on total resistance,trim,and sinkage.The initial Fridsma hull with a deadrise angle of 20°has been used for validation,demonstrating good agreement with measurements at different Froude numbers.Subsequently,new configurations based on the Fridsma hull have been designed by varying the deadrise angle,number of chines,and transverse steps.Our findings reveal a correlation between the deadrise angle,the number of chines,and the Froude number.As the deadrise angle increases,total resistance also increases.Additionally,a single chine yields superior results at higher Froude numbers,while multiple chines offer advantages at lower values.The introduction of transverse steps consistently increases total resistance,highlighting their role in improving planing hull performance.This research not only offers valuable insights into planing hull design but also leverages state-of-the-art numerical methods to advance the understanding of hydrodynamic behaviors at high ship speeds.
文摘A tunneled planing hull has unique hybrid hydrodynamic and aerodynamic characteristics due to the presence of a tunnel.In this paper,experimental and numerical investigations on hydrody namic analysis of a tunneled planing hull are carried out.The resistance tests of models with three dif ferent masses(127.4 kg,159.5 kg,202.9 kg)are conducted for the Froude number in the range of 0.761≤Fn≤1.925.The results of resistance measured by towing tank imply that the tunneled planing hull with a larger displacement has a superior resistance performance.The numerical simulation of Reynolds Average Navier Stokes(RANS)equations based on the finite volume method is performed to analyze the hull characteristics in calm water(M=159.5 kg)with two degrees of freedom(sinkage and trim).The numerical results are compared with the experimental data,which shows good agreement.Pressure distribution,wave profiles and lift forces obtained by SST k-ωand Realizable k-εturbulence models are compared and discussed.Finally,the local fluid flow of streamline around the hull can be divided into four regions due to the presence of a tunnel,which is different from the behaviors of the conventional planing monohull with prismatic form.
文摘High-speed planing crafts have successfully evolved through developments in the last several decades.Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provide general understanding for practical design.However,sometimes such analyses suffer inaccuracies since the air–water interface effects,especially in the transition phase,are not fully accounted for.Hence,understanding the behaviour at the transition speed is of fundamental importance for the designer.The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz.,knuckles,chines and transom,with resultant spray generation.In such cases,the application of potential theory at high speeds introduces limitations.This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air–water interface effects,with validations through experiments to compare the drag,dynamic trim and wetted surface area.The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air–water interface effects.The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests.It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids.Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag,and their ability to capture the spray resulting from the air–water interaction.The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air–water interface,drag at the pre-planing and full planing range and dynamic trim angles.
基金Supported by the National Natural Science Foundation of China (51009038/E091002)
文摘Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method(CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes(RANS) equations.The volume of fluid(VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds.
文摘In the present paper,the hydrodynamic performance of stepped planing craft is investigated by computational fluid dynamics(CFD)analysis.For this purpose,the hydrodynamic resistances of without step,one-step,and two-step hulls of Cougar planing craft are evaluated under different distances of the second step and LCG from aft,weight loadings,and Froude numbers(Fr).Our CFD results are appropriately validated against our conducted experimental test in National Iranians Marine Laboratory(NIMALA),Tehran,Iran.Then,the hydrodynamic resistance of intended planing crafts under various geometrical and physical conditions is predicted using artificial neural networks(ANNs).CFD analysis shows two different trends in the growth rate of resistance to weight ratio.So that,using steps for planing craft increases the resistance to weight ratio at lower Fr and decreases it at higher Fr.Additionally,by the increase of the distance between two steps,the resistance to weight ratio is decreased and the porpoising phenomenon is delayed.Furthermore,we obtained the maximum mean square error of ANNs output in the prediction of resistance to weight ratio equal to 0.0027.Finally,the predictive equation is suggested for the resistance to weight ratio of stepped planing craft according to weights and bias of designed ANNs.
基金Supported by the Foundation of State Key Laboratory of Autonomous Underwater Vehicle, Harbin Engineering Universitythe Fundamental Research Funds for the Central Universities (HEUCFL20101113)
文摘In order to minimize the harm caused by the instability of a planing craft, a motion prediction model is essential. This paper analyzed the feasibility of using an MGM(1,N) model in grey system theory to predict planing craft motion and carried out the numerical simulation experiment. According to the characteristics of planing craft motion, a recurrence formula was proposed of the parameter matrix of an MGMfl,N) model. Using this formula, data can be updated in real-time without increasing computational complexity significantly. The results of numerical simulation show that using an MGM(1,N) model to predict planing motion is feasible and useful for prediction. So the method proposed in this study can reflect the planing craft motion mechanism successfully, and has rational and effective functions of forecasting and analyzing trends.
文摘Recently, Morabito(2010) has studied the water spray phenomena in planing hulls and presented new analytical equations. However, these equations have not been used for detailed parametric studies of water spray around planing hulls. In this paper, a straight forward analysis is conducted to apply these analytical equations for finding the spray geometry profile by developing a computer program based on presented computational process. The obtained results of the developed computer program are compared against existing data in the literature and favorable accuracy is achieved. Parametric studies have been conducted for different physical parameters. Positions of spray apex are computed and three dimensional profiles of spray are examined. It is concluded that spray height increases by an increase in the speed coefficient or the deadrise angle. Ultimately, a computational process is added to Savitsky's method and variations of spray apex are computed for different velocities. It is shown that vertical, lateral, and longitudinal positions of spray increase as the craft speed increases. On the other hand, two new angles are defined in top view and it is concluded that they have direct relation with the trim angle. However, they show inverse relation with the deadrise angle.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y2080253)the Education Department of Zhejiang Province (No. Y200909376)+1 种基金the Science and Technology Department of Zhejiang Province (No. 2007C24010)2011 China State Key Clinical Department Grants
文摘Objective: To assess the short-term effect of scaling and root planing (SRP) and essential-oils mouthwash on the levels of specific bacteria in Chinese adults. Methods: Fifty Chinese adults with chronic periodontitis were randomly assigned to full-mouth SRP or a 7-d essential-oils mouthwash regimen. In addition, 22 periodontally healthy adults used essential-oils mouthwash for 7 d. Clinical examination and plaque/saliva sampling were performed at baseline and on Day 7. Quantitative real-time polymerase chain reaction (PCR) was used to measure Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), and total bacterial loads in saliva, supra- and sub-gingival plaque samples. Results: The detection frequencies of four tested species remained unchanged after either treatment. However, the bacterial loads of Fn, Pg, and Pi were significantly reduced by SRP; the mean reduction of bacterial counts in saliva ranged from 52.2% to 62.5% (p<0.01), in supragingival plaque from 68.2% to 81.0% (p<0.05), and in subgingival plaque from 67.9% to 93.0% (p<0.01). Total bacterial loads were reduced after SRP in supra- and sub-gingival plaque (p<0.05). Essential-oils mouthwash reduced Fn levels in supragingival plaque by a mean of 53.2%, and reduced total bacterial loads in supra- and sub-gingival plaque (p<0.01). In subgingival plaque from periodontal patients, Pg and Pi reductions were high after SRP compared to essential-oils mouthwash (93.0% vs. 37.7% and 87.0% vs. 21.0%, p<0.05). No significant bacterial reduction was observed in periodontally healthy subjects using essential-oils mouthwash. Conclusions: SRP and essential-oils mouthwash both have an impact on saliva and gingival plaque flora in Chinese periodontitis patients in 7 d, with greater microbiological improvement by SRP.
文摘This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method. The numerical method for computation of the induced pressure and lift is potential-based boundary element method. Special technique is identified to present upwash geometry and to determine the spray drag. Numerical results of a planing flat plate and planing craft model 4666 are presented. It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude numbers.
文摘High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong coupling between rigid body motions and hydrodynamic analysis. In addition, free surface should be predicted with good accuracy for each time step. In this paper, velocity and pressure fields are coupled by use of the fractional step method. On the basis of in- tegration of the two-phase viscous flow induced stresses over the hull, acting loads (forces and moments) are calculated. With the strategy of boundary-fitted body-attached mesh and calculation of 6-DoF motions in each time step, time history of ship motions including displacements, speeds and accelerations are evaluated. For the demonstration of the software capabilities, circular cylinder slamming is simulated as a simple type of water slamming. Then, a high-speed planing catamaran is investigated in the case of steady forward motion. All of the results are in good concordance with experimental data. The present method can be widely implemented in design as well as in the performance prediction of high-speed vessels.
基金Supported by the National Natural Science Foundation of China(51279070) the Natural Science Foundation for Colleges and Universities in Jiangsu Province(12KJA_580001) Jiangsu Advantage Discipline Foundation
文摘The purpose of this research study was to examine the attitude response of a planing craft under the controllable hydrofoils.Firstly,a non-linear longitudinal attitude model was established.In the mathematical model,effects of wind loads were considered.Both the wetted length and windward area varied in different navigation conditions.Secondly,control strategies for hydrofoils were specified.Using the above strategies,the heave and trim of the planing craft was adjusted by controllable hydrofoils.Finally,a simulation program was developed to predict the longitudinal attitudes of the planing craft with wind loads.A series of simulations were performed and effects of control strategies on longitudinal attitudes were analyzed.The results show that under effects of wind loads,heave of fixed hydrofoils planing craft decreased by 6.3%,and pitch increased by 8.6% when the main engine power was constant.Heave decreased by less than 1% and trim angle decreased by 1.7% as a result of using variable attack angle hydrofoils;however,amplitude changes of heave and pitch were less than 1% under the control of changeable attack angle hydrofoils and longitudinal attitude.
文摘To forecast the modification and evolution of a residual stress field in a butt-welded plate, the residual stress field was numerically evaluated by a finite element method code. The plate was originated by welding and suffered after chip- forming machining. The residual stress field was taken as a pre-stress condition for the next cutting simulations. Residual stress distribution after machining was then compared to that in the initial residual stress field. Numerical results have been compared to experimental measurements. That shows the potentiality as well as the limitations of numerical techniques. Three major contributions are summarized as follows : Longitudinal residual stress distribution in welded plates is deeply changed by mechanical tooling; Planing and cutting increases peak values of transversal residual stress and in general introduces some unevenness in distribution along X-direction; Comparison of experimental and numerical values is generally satisfactory for longitudinal residual stress.
文摘The need to have naval units ever faster pushed the ship design to design hull shapes with increasingly higher performance thanks to the use of lightweight materials such as aluminum, and more powerful engines, etc., but without substantially modifying the traditional forms of hull. The hull patented Monotricat high hydrodynamic efficiency and energy saving it represents an evolution of the traditional architectures of the hulls, as its shape is adapted to recover wave formation engendered from the bow and sprays associated with it so as to reduce the resistance to the benefit of the speed, and navigating in displacement at speeds of planing hulls with an efficiency of about 20%. The patented hull Monotricat represents the overcoming of distinction between displacement and planing hulls, because, unlike previous solutions, the hull conventionally called Monotricat is the first displacement hull that can navigate at both displacement and planning speeds, with a resistance curve almost straight, maintaining the characteristics of a displacement hull, since it combines the characteristics of displacement and planning hull. It presents an innovative architecture that could be defined as a hybrid between a monohull and catamaran, navigating on spray self-produced. The combination of these three types of naval hulls allows it to ensure: safety, comfort navigation, best seakeeping and maneuverability in restricted waters, stability, reduction of resistance to motion, cost management, regularity on the routes even in adverse weather-sea. These characteristics of the hull have been studied, tested and validated by leading research institutes and universities with more ameliorative results in each subsequent experimentation, reported in the present work, which demonstrated a greater hydrodynamic efficiency compared to conventional hulls of 20%.
文摘Based on the research, simulation and experimental investigation of Basilisk Lizard running on the water surface, and similar experimental investigation of the craft models and practical crafts running on the water surface for about 30 years. The Bionic Lizard Flying Wheel Planing Craft was created and invented. This paper describes the evolution, experimental investigation, test results, design features, advantages, applications, and prospect of the innovation, which denotes the craft with excellent speed performance (high speed, extra STOL (short take-off and landing distance) and VTOL(vertical take-off and landing) characteristics, good transverse and longitudinal stability, super shallow water draft, high propulsion efficiency at high speed without cavitations obstacle, low external field noise, small dimension, simple configuration and structure, good economy, nice transportation efficiency, and possibly is first of these kinds in the HPMV (High Performance Marine Vessels) family around the world.
文摘The demand for high-speed boats that operating near to shoreline is increasing nowadays.Understanding the behavior and attitude of high-speed boats when moving in different waterways is very important for boat designer.This research uses a CFD(Computational Fluid Dynamics)analysis to investigate the shallow water effects on prismatic planing hull.The turbulence fl ow around the hull was described by Reynolds Navier Stokes equations RANSE using the k-ɛturbulence model.The free surface was modelled by the volume of fl uid(VOF)method.The analysis is steady for all the ranges of speeds except those close to the critical speed range Fh=0.84 to 1.27 due to the propagation of the planing hull solitary waves at this range.In this study,the planing hull lift force,total resistance,and wave pattern for the range of subcritical speeds,critical speeds,and supercritical speeds have been calculated using CFD.The numerical results have been compared with experimental results.The dynamic pressure distribution on the planing hull and its wave pattern at critical speed in shallow water were compared with those in deep water.The numerical results give a good agreement with the experimental results whereas total average error equals 7%for numerical lift force,and 8%for numerical total resistance.The worst effect on the planing hull in shallow channels occurs at the critical speed range,where solitary wave formulates.
文摘Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions.
基金supported by the National Nature Science Foun-dation of China(Grant No.50879014)the Doctoral Program of Higher Education of China(Grant No.200802170010)
文摘This paper studies the hydrodynamic performance of a channel type planing trimaran. A numerical simulation is carried out based on a RANS-VOF solver to analyze the hydrodynamic performance of the channel type planing trimaran. A series of hydrodynamic experiments in towing tank were carried out, in which both the running attitude and the resistance performance of the trimaran model were recorded. Some hydrodynamic characteristics of the channel type planning trimaran are shown by the results. Firstly, the resistance declines significantly, with the forward speed across the high-speed resistance peak due to the combined effects of the aerodynamic and hydrodynamic lifts. Secondly, the resistance performance is influenced markedly by the longitudinal positio- ns of centre of the gravity and the displacements. Besides, the pressure distribution on the hull and the two-phase flow in the channel are discussed in the numerical simulations.
文摘In this paper, the fluid dynamic performance for a new boat form grooved planing boats is analyzed, and the results of resistance tests for seven grooved planing boat models of different types are presented in the form of curves of attack angle and resistance-weight ratio versus Froude number. According to these curves, the effect of some parameters of the boat type on the resistance is analyzed.
基金supports from the National Natural Science Foundation of China (Grant Nos.52004143 and 52374095)the open fund for the Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No.SKLMRDPC21KF06).
文摘A series of true triaxial unloading tests are conducted on sandstone specimens with a single structural plane to investigate their mechanical behaviors and failure characteristics under different in situ stress states.The experimental results indicate that the dip angle of structural plane(θ)and the intermediate principal stress(σ2)have an important influence on the peak strength,cracking mode,and rockburst severity.The peak strength exhibits a first increase and then decrease as a function ofσ2 for a constantθ.However,whenσ2 is constant,the maximum peak strength is obtained atθof 90°,and the minimum peak strength is obtained atθof 30°or 45°.For the case of an inclined structural plane,the crack type at the tips of structural plane transforms from a mix of wing and anti-wing cracks to wing cracks with an increase inσ2,while the crack type around the tips of structural plane is always anti-wing cracks for the vertical structural plane,accompanied by a series of tensile cracks besides.The specimens with structural plane do not undergo slabbing failure regardless ofθ,and always exhibit composite tensile-shear failure whatever theσ2 value is.With an increase inσ2 andθ,the intensity of the rockburst is consistent with the tendency of the peak strength.By analyzing the relationship between the cohesion(c),internal friction angle(φ),andθin sandstone specimens,we incorporateθinto the true triaxial unloading strength criterion,and propose a modified linear Mogi-Coulomb criterion.Moreover,the crack propagation mechanism at the tips of structural plane,and closure degree of the structural plane under true triaxial unloading conditions are also discussed and summarized.This study provides theoretical guidance for stability assessment of surrounding rocks containing geological structures in deep complex stress environments.