This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlyin...This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlying physical mechanism. Specifically, for the simplified case of constant stratospheric N^(2), the refractive index square of planetary waves has a theoretical tendency to increase first and then decrease with an increased N^(2), whereas the group velocity weakens. Mechanistically, this behavior can be understood as an intensified suppression of vertical isentropic surface displacement caused by meridional heat transport of planetary waves under strong N^(2) conditions. Observational analysis corroborates this finding, demonstrating a reduction in the vertical-propagation velocity of waves with increased N^(2). A linear, quasi- geostrophic, mid-latitude beta-plane model with a constant background westerly wind and a prescribed N^(2) applicable to the stratosphere is used to obtain analytic solutions. In this model, the planetary waves are initiated by steady energy influx from the lower boundary. The analysis indicates that under strong N^(2) conditions, the amplitude of planetary waves can be sufficiently increased by the effective energy convergence due to the slowing vertical energy transfer, resulting in a streamfunction response in this model that contains more energy. For N^(2) with a quasi-linear vertical variation, the results bear a resemblance to the constant case, except that the wave amplitude and oscillating frequency show some vertical variations.展开更多
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred...This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.展开更多
1AIM AND SCOPE Geoscience Frontiers(GSF)publishes peer reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences.
Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme...Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments.These dynamic high-pressure states are relevant to a wide range of phenomena,including planetary formation,asteroid impacts,spacecraft shielding,and inertial confinement fusion.The integration of advanced X-ray diffraction experimental techniques,from laser-induced X-ray sources and X-ray free-electron lasers,and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions.This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide,concentrating on dynamical phase transitions,metastable and transient states,the influence of crystal orientation,microstructural changes,and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.展开更多
NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of ...NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of Fe-Ni metal.The meteorite has also undergone intense shock metamorphism,which is evidenced by the presence of ringwoodite,tuite,and xieite(a type of chromite with a CaTi_(2)O_(4)structure)within the shock melt veins(SMVs).The texture,mineral modal abundances,and bulk compositions(measured from the SMVs)of NWA 6950 are similar to those of the NWA 773 clan,as are the concentrations and patterns of rare-earth-elements in olivine,pyroxene,plagioclase,and phosphate.In-situ U-Pb dating of baddeleyite and phosphate in NWA 6950 has determined its crystallization age to be 3133±11 and 3129±23 Ma,which is consistent with age data provided by Shaulis et al.(2017).Further,the chronology of the NWA 773 clan appears to be at least bimodal when considering the age of NWA 3333(3038±20 Ma;Merle et al.,2020).The tight range of ages for the NWA 773 clan at approximately 3.1 Ga coincides with a change in the eruption flux and style on the Moon.This suggests that lunar volcanism may have shifted from extrusivedominated to intrusive-dominated at approximately 3.1 Ga,resulting in the widespread distribution of gabbro lithologies on the Moon.展开更多
This paper critically re-examines the anthropocentric“Goldilocks Zone”paradigm that has dominated the search for extraterrestrial life.As of 2024,more than 5,500 exoplanets have been identified,yet only about 2%are ...This paper critically re-examines the anthropocentric“Goldilocks Zone”paradigm that has dominated the search for extraterrestrial life.As of 2024,more than 5,500 exoplanets have been identified,yet only about 2%are located within the traditionally defined habitable zone(National Aeronautics and Space Administration(NASA)Exoplanet Archive,2024;Kane et al.,2023).Moreover,the discovery of extremophiles-organisms thriving in high-radiation,extreme heat,or vacuum environments-demonstrates that the boundaries of life far exceed Earth-like conditions(Rothschild&Mancinelli,2001).展开更多
As the world’s fourth most populous country,Indonesia presents challenges and opportunities for sustainable energy progress,offering a critical context to investigate green human development(GHD).This study uniquely ...As the world’s fourth most populous country,Indonesia presents challenges and opportunities for sustainable energy progress,offering a critical context to investigate green human development(GHD).This study uniquely contributes to the literature by employing the planetary pressures-adjusted human development index(PHDI)as an indicator of GHD,which integrates environmental impacts into human development.Using static and dynamic econometric methods,including the quantile regression and autoregressive distributed lag model,it explores the impacts of renewable and nonrenewable energy consumption on GHD.The findings demonstrate that renewable energy currently has a detrimental impact on GHD due to its limited adoption and high costs.Conversely,nonrenewable energy positively influences GHD,as it is the primary energy source in the country and is becoming more efficient at reducing emissions.However,the study finds that greater use of renewable energy reduces its adverse effects,suggesting that as renewable energy technologies become more cost-effective and widely implemented,their initial adverse effects could be mitigated,leading to improved long-term GHD outcomes.These findings carry important implications for Indonesia,where the govern‐ment is striving to expand renewable energy capacity while promoting equitable development across its archi‐pelagic regions.They underscore the critical role of energy policy in balancing economic,social,and environmental goals,contributing meaningfully to the country’s sustainable development agenda.展开更多
The surface particle size and distribution characteristics of celestial bodies (e.g.,the Moon,asteroids,etc.) will affect the interpretation of hyperspectral remote sensing data and the implementation of sampling miss...The surface particle size and distribution characteristics of celestial bodies (e.g.,the Moon,asteroids,etc.) will affect the interpretation of hyperspectral remote sensing data and the implementation of sampling missions.Currently,the estimation of the surface particle sizes is mainly focusing on interpreting the thermal inertia with the infrared spectral data from ground-based or space telescopes,but this method show distinct errors compared with the imaging results of the orbiter.By analyzing some thermal infrared spectral data,a relationship between the particle sizes of the main rockforming minerals (e.g.pyroxene,feldspar,olivine) and the slopes of their thermal infrared spectrum was found.Based on this relationship,a preliminary model for estimating the grain sizes (~30–300μm) of lunar or S-type asteroids’surfaces which are silicate minerals dominated was established,and the correlation coefficients (R^(2)) for most of the rock-forming minerals were better than 90%.Six observational datasets of natural lunar and terrestrial samples are used to validate the model,and the results show a systematical overestimation of the ground-truth particle sizes,the potential causes are analyzed and an additional correction is used to eliminate the overestimation of the particle size prediction.These results are expected to provide guidance for interpretation of lunar and S-type asteroid surface sampling and spectral data.展开更多
The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear tr...The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear trains,the internal and external gear rings are designed.Based on the internal and external gear rings,the metamaterial based on inner and outer planetary gear trains(MIP)is designed to study the shear modulus,Young's modulus,and amplitude-frequency characteristics of the metamaterial based on gears at different angles.The effects of the number of planetary gears on the physical characteristics of the MIP are studied.The results show that the MEG can be continuously adjusted by adjusting the shear modulus and Young's modulus due to its meshing characteristics.With the same number of gears,the adjustment range of the MIP is larger than the adjustment range of the MEG.When the number of planetary gears increases,the adjustment range of the MIP decreases.Moreover,when the metamaterial based on gears rotates,the harmonic response changes with the change of the angle.展开更多
The mechanical properties of minerals in planetary materials are not only interesting from a fundamental point of view but also critical to the development of future space missions.Here we present nanoindentation expe...The mechanical properties of minerals in planetary materials are not only interesting from a fundamental point of view but also critical to the development of future space missions.Here we present nanoindentation experiments to evaluate the hardness and reduced elastic modulus of olivine,(Mg,Fe)_(2)SiO_(4),in meteorite NWA 12008,a lunar basalt.Our experiments suggest that the olivine grains in this lunaite are softer and more elastic than their terrestrial counterparts.Also,we have performed synchrotron-based high-pressure X-ray diffraction(HP-XRD)measurements to probe the compressibility properties of olivine in this meteorite and,for comparison purposes,of three ordinary chondrites.The HP-XRD results suggest that the axial compressibility of the orthorhombic b lattice parameter of olivine relative to terrestrial olivine is higher in NWA 12008 and also in the highly-shocked Chelyabinsk meteorite.The origin of the observed differences is discussed.A simple model combining the results of both our nanoindentation and HP-XRD measurements allows us to describe the contribution of macroscopic and chemical-bond related effects,both of which are necessary to reproduce the observed elastic modulus softening.Such joint analysis of the mechanical and elastic properties of meteorites and returned samples opens up a new avenue for characterizing these highly interesting materials.展开更多
On June 3,Scopus,a database owned by Elsevier,released CiteScore 2024 metrics for academic journal evaluation.Both the Chinese and English editions of Petroleum Exploration and Development achieved record highs in the...On June 3,Scopus,a database owned by Elsevier,released CiteScore 2024 metrics for academic journal evaluation.Both the Chinese and English editions of Petroleum Exploration and Development achieved record highs in the past year,ranking among the top in various categories.The CiteScore of the Chinese edition increased to 9.9 in 2024 from 8.4 in 2023,ranking 13th out of 330 journals in the Earth and Planetary Sciences:Geology category and 2lst out of 239 journals in the Earth and Planetary Sciences:Geotechnical Engineering and Engineering Geology category.展开更多
Using long-term Whole Atmosphere Community Climate Model version 5(WACCM5)simulations initialized with the climatology around the year 2000,we studied the anomalous distribution of planetary wave and gravity wave flux...Using long-term Whole Atmosphere Community Climate Model version 5(WACCM5)simulations initialized with the climatology around the year 2000,we studied the anomalous distribution of planetary wave and gravity wave fluxes during distinct phases of the boreal stratospheric polar vortex(BSPV)and Quasi-Biennial Oscillation(QBO).The contributions of these two types of waves to Brewer-Dobson circulation(BDC)anomalies were further analyzed.The results revealed that under four distinct phases,the northern hemisphere BDC is primarily governed by planetary waves,whereas gravity waves counteract approximately half of the planetary wave influence on the BDC in the upper stratosphere.The QBO regulates the position of the anomaly center within the BDC’s descending branch in the northern hemisphere.In particular,during the westerly phase of the QBO(WQBO),the center of this anomalous descending branch is located in the upper stratosphere,whereas during the easterly phase of the QBO(EQBO),it is located in the lower stratosphere.Southern hemisphere BDC anomalies are regulated more by QBO activity:during the WQBO,it shows synchronous changes with the BDC anomaly in the northern hemisphere,whereas during the EQBO,it exhibits an antiphase relationship with the BDC anomaly in the northern hemisphere.Mesospheric circulation anomalies are predominantly driven by gravity wave activity.The circulation weakens during a weak BSPV and strengthens during a strong BSPV.Additionally,the descending branch anomaly of the northern hemisphere circulation is more pronounced during the WQBO,whereas the ascending branch anomaly of the southern hemisphere circulation is more significant during the EQBO.展开更多
The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temper...The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
By applying the convolution-based Hilbert transform in the zonal direction on six-hourly streamfunction fields at200 h Pa, we present the climatology and trends of the local wave period, and zonal and meridional phase...By applying the convolution-based Hilbert transform in the zonal direction on six-hourly streamfunction fields at200 h Pa, we present the climatology and trends of the local wave period, and zonal and meridional phase speeds, of Rossby waves over the globe during the solstice seasons of 1979–2023. While partly similar to and inspired by Fragkoulidis and Wirth(2020), our method differs in its ability to cover both planetary-scale and synoptic-scale waves over not only the extratropics, but also the tropics and subtropics. Based on a physically reasonable global distribution of wave periods, our key new finding is a robust prolonging of wave periods over most regions of the tropics and subtropics during both solstice seasons of 1979–2023, except for the tropical Atlantic, which experiences a shortened wave period during June–July–August of 1979–2022. Both the prolonging and shortening of wave periods are mainly associated with the changes in planetary-scale waves. Regionally varying trends of the zonal phase speed(Cpx) of synoptic waves are consistent in sign with, but smaller in magnitude than, the trends of local zonal wind, confirming the conclusion of Wu and Lu(2023)on the opposite effects of zonal wind and the meridional gradient of potential vorticity on Cpx. Meanwhile, the Cpx trends of planetary-scale waves are relatively weak, and do not exhibit a robust relation with the trend of zonal wind. These new results are helpful toward better understanding the changes in atmospheric waves and extreme events under global warming.展开更多
While China pioneers a revolutionary model of ecological civilization,some Western nations,faltering under fragmented policies and infrastructural inertia,should catch up,reconciling prosperity with planetary survival.
In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nucl...In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nuclear blast could create a burst of X-rays powerful enough to change the path of a large asteroid that might one day be on a collision course with Earth.展开更多
Sent out at 1:31am GMT+8 on May 29 by a Long March-3B carrier rocket from the Xichang Satellite Launch Center in Sichuan province,China,Tianwen-2,the second mission of China’s Planetary Exploration Program,correctly ...Sent out at 1:31am GMT+8 on May 29 by a Long March-3B carrier rocket from the Xichang Satellite Launch Center in Sichuan province,China,Tianwen-2,the second mission of China’s Planetary Exploration Program,correctly entered the transfer trajectory toward an asteroid named 2016HO3 after flying for 18 minutes.Its solar wings unfolded properly,signaling a successful start,and primed for the next stage of its mission.展开更多
The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character...The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42261134532,42405059,and U2342212)。
文摘This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlying physical mechanism. Specifically, for the simplified case of constant stratospheric N^(2), the refractive index square of planetary waves has a theoretical tendency to increase first and then decrease with an increased N^(2), whereas the group velocity weakens. Mechanistically, this behavior can be understood as an intensified suppression of vertical isentropic surface displacement caused by meridional heat transport of planetary waves under strong N^(2) conditions. Observational analysis corroborates this finding, demonstrating a reduction in the vertical-propagation velocity of waves with increased N^(2). A linear, quasi- geostrophic, mid-latitude beta-plane model with a constant background westerly wind and a prescribed N^(2) applicable to the stratosphere is used to obtain analytic solutions. In this model, the planetary waves are initiated by steady energy influx from the lower boundary. The analysis indicates that under strong N^(2) conditions, the amplitude of planetary waves can be sufficiently increased by the effective energy convergence due to the slowing vertical energy transfer, resulting in a streamfunction response in this model that contains more energy. For N^(2) with a quasi-linear vertical variation, the results bear a resemblance to the constant case, except that the wave amplitude and oscillating frequency show some vertical variations.
基金supported by the National Key R&D Program of China[grant number 2023YFC3008004]。
文摘This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure.
文摘1AIM AND SCOPE Geoscience Frontiers(GSF)publishes peer reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences.
基金supported by the National Natural Science Foundation of China under Grant Nos.12534013,12035002,12047561,and 12104507as well as the Science and Technology Innovation Program of Hunan Province under Grant No.2021RC4026+1 种基金T.Sekine gratefully acknowledges financial support from the Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments,China(Grant No.22dz2260800)from the Shanghai Science and Technology Committee,China(Grant No.22JC1410300).
文摘Shock compression driven by nanosecond-laser techniques generates extreme pressure and temperature conditions in materials,enabling the study of high-pressure phase transitions and the behavior of materials in extreme environments.These dynamic high-pressure states are relevant to a wide range of phenomena,including planetary formation,asteroid impacts,spacecraft shielding,and inertial confinement fusion.The integration of advanced X-ray diffraction experimental techniques,from laser-induced X-ray sources and X-ray free-electron lasers,and theoretical simulations has provided unprecedented insights into material behavior under extreme conditions.This perspective reviews recent advances in dynamic high-pressure research and the insights that they can provide,concentrating on dynamical phase transitions,metastable and transient states,the influence of crystal orientation,microstructural changes,and the kinetic mechanism of phase transitions across a variety of interdisciplinary fields.
基金supported by a pre-research project on Civil Aerospace Technologies funded by CNSA(No.D020205)the Natural Science Foundation of China(Nos.42241156)+1 种基金the CUG outstanding youth team project(No.G1323523042)the Central Public-interest Scientific Institution Basal Research Fund for Institute of Geology,CAGS(No.J1904)。
文摘NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin.Specifically,the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin,as does the presence of Fe-Ni metal.The meteorite has also undergone intense shock metamorphism,which is evidenced by the presence of ringwoodite,tuite,and xieite(a type of chromite with a CaTi_(2)O_(4)structure)within the shock melt veins(SMVs).The texture,mineral modal abundances,and bulk compositions(measured from the SMVs)of NWA 6950 are similar to those of the NWA 773 clan,as are the concentrations and patterns of rare-earth-elements in olivine,pyroxene,plagioclase,and phosphate.In-situ U-Pb dating of baddeleyite and phosphate in NWA 6950 has determined its crystallization age to be 3133±11 and 3129±23 Ma,which is consistent with age data provided by Shaulis et al.(2017).Further,the chronology of the NWA 773 clan appears to be at least bimodal when considering the age of NWA 3333(3038±20 Ma;Merle et al.,2020).The tight range of ages for the NWA 773 clan at approximately 3.1 Ga coincides with a change in the eruption flux and style on the Moon.This suggests that lunar volcanism may have shifted from extrusivedominated to intrusive-dominated at approximately 3.1 Ga,resulting in the widespread distribution of gabbro lithologies on the Moon.
文摘This paper critically re-examines the anthropocentric“Goldilocks Zone”paradigm that has dominated the search for extraterrestrial life.As of 2024,more than 5,500 exoplanets have been identified,yet only about 2%are located within the traditionally defined habitable zone(National Aeronautics and Space Administration(NASA)Exoplanet Archive,2024;Kane et al.,2023).Moreover,the discovery of extremophiles-organisms thriving in high-radiation,extreme heat,or vacuum environments-demonstrates that the boundaries of life far exceed Earth-like conditions(Rothschild&Mancinelli,2001).
文摘As the world’s fourth most populous country,Indonesia presents challenges and opportunities for sustainable energy progress,offering a critical context to investigate green human development(GHD).This study uniquely contributes to the literature by employing the planetary pressures-adjusted human development index(PHDI)as an indicator of GHD,which integrates environmental impacts into human development.Using static and dynamic econometric methods,including the quantile regression and autoregressive distributed lag model,it explores the impacts of renewable and nonrenewable energy consumption on GHD.The findings demonstrate that renewable energy currently has a detrimental impact on GHD due to its limited adoption and high costs.Conversely,nonrenewable energy positively influences GHD,as it is the primary energy source in the country and is becoming more efficient at reducing emissions.However,the study finds that greater use of renewable energy reduces its adverse effects,suggesting that as renewable energy technologies become more cost-effective and widely implemented,their initial adverse effects could be mitigated,leading to improved long-term GHD outcomes.These findings carry important implications for Indonesia,where the govern‐ment is striving to expand renewable energy capacity while promoting equitable development across its archi‐pelagic regions.They underscore the critical role of energy policy in balancing economic,social,and environmental goals,contributing meaningfully to the country’s sustainable development agenda.
基金supported by China’s first Asteroid exploration program and China National Space Administration(CNSA)was also funded by the National Natural Science Foundation of China (NSFC,Grant No.12373068)。
文摘The surface particle size and distribution characteristics of celestial bodies (e.g.,the Moon,asteroids,etc.) will affect the interpretation of hyperspectral remote sensing data and the implementation of sampling missions.Currently,the estimation of the surface particle sizes is mainly focusing on interpreting the thermal inertia with the infrared spectral data from ground-based or space telescopes,but this method show distinct errors compared with the imaging results of the orbiter.By analyzing some thermal infrared spectral data,a relationship between the particle sizes of the main rockforming minerals (e.g.pyroxene,feldspar,olivine) and the slopes of their thermal infrared spectrum was found.Based on this relationship,a preliminary model for estimating the grain sizes (~30–300μm) of lunar or S-type asteroids’surfaces which are silicate minerals dominated was established,and the correlation coefficients (R^(2)) for most of the rock-forming minerals were better than 90%.Six observational datasets of natural lunar and terrestrial samples are used to validate the model,and the results show a systematical overestimation of the ground-truth particle sizes,the potential causes are analyzed and an additional correction is used to eliminate the overestimation of the particle size prediction.These results are expected to provide guidance for interpretation of lunar and S-type asteroid surface sampling and spectral data.
基金supported by the Guangxi Science and Technology Major Program of China(Nos.AA23073019 and AA24263074)the National Natural Science Foundation of China(No.52265004)+7 种基金the Guangxi Natural Science Fund for Distinguished Young Scholars of China(No.2024JJG160014)the Innovation Project of Guangxi Graduate Education of China(No.YCSW2024119)the Open Fund of State Key Laboratory of Intelligent Manufacturing Equipment and Technology of China(No.IMETKF2025021)the Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance-Central South University of China(No.Kfkt2023-06)the Open Fund of High-end Basic Component Innovation Station of China(No.KY01080030124001)the Open Fund for Academician Mao Ming's Workstation of China(No.XSJSFW-QNKXJ-202404-007)the Technology Innovation Platform Project of China Aviation Engine Group Corporation(No.CXPT-2023-044)the Open Fund for Innovation Workstation in the National Defense Science and Technology Innovation Special Zone(Xi'an Jiaotong University).
文摘The metamaterial based on external meshing gears(MEG)is designed based on the principle of external meshing gear transmission.Based on the meshing transmission principle of external meshing gears and planetary gear trains,the internal and external gear rings are designed.Based on the internal and external gear rings,the metamaterial based on inner and outer planetary gear trains(MIP)is designed to study the shear modulus,Young's modulus,and amplitude-frequency characteristics of the metamaterial based on gears at different angles.The effects of the number of planetary gears on the physical characteristics of the MIP are studied.The results show that the MEG can be continuously adjusted by adjusting the shear modulus and Young's modulus due to its meshing characteristics.With the same number of gears,the adjustment range of the MIP is larger than the adjustment range of the MEG.When the number of planetary gears increases,the adjustment range of the MIP decreases.Moreover,when the metamaterial based on gears rotates,the harmonic response changes with the change of the angle.
基金Financial support from the project PID2021-128062NB-I00 funded by the Spanish Ministerio de Ciencia,Innovación y Universidades MCIU(doi:10.13039/501100011033)is acknowledged,as well as the Spanish program Unidad de Excelencia María de Maeztu CEX2020-001058-M.The ALBA-CELLS synchrotron is acknowledged for granting beamtime at the MSPD beamline under projects 2021095390 and 2022025734.PG-T acknowledges the financial support from the Spanish MCIU through the FPI predoctoral fellowship PRE2022-104624.JS acknowledges the financial support from projects 2021-SGR-00651 and PID2020-116844RB-C21.EP-A acknowledges financial support from the LUMIO project funded by the Agenzia Spaziale Italiana(2024-6-HH.0).DE thanks the financial support from Spanish MCIU under projects PID2022-138076NB-C41 and RED2022-134388-T from Generalitat Valenciana(GVA)through grants CIPROM/2021/075 and MFA/2022/007,which are part of the Advanced Materials program and is supported with funding from the European Union Next Generation EU(PRTR-C17.I1).RT and DE(PB and DE)thank GVA for the Postdoctoral Fellowship CIAPOS/2021/20(CIAPOS/2023/406).JS-M thanks the Spanish MCIU for the PRE2020-092198 fellowship.NWA 12008 has been studied within the framework of an international European consortium led by IFP.Special acknowledge to I.Weber for providing the NWA 12008 meteorite thin section.This work is part of the doctoral thesis of PG-T(Doctoral Program in Physics at Universitat Autònoma de Barcelona).
文摘The mechanical properties of minerals in planetary materials are not only interesting from a fundamental point of view but also critical to the development of future space missions.Here we present nanoindentation experiments to evaluate the hardness and reduced elastic modulus of olivine,(Mg,Fe)_(2)SiO_(4),in meteorite NWA 12008,a lunar basalt.Our experiments suggest that the olivine grains in this lunaite are softer and more elastic than their terrestrial counterparts.Also,we have performed synchrotron-based high-pressure X-ray diffraction(HP-XRD)measurements to probe the compressibility properties of olivine in this meteorite and,for comparison purposes,of three ordinary chondrites.The HP-XRD results suggest that the axial compressibility of the orthorhombic b lattice parameter of olivine relative to terrestrial olivine is higher in NWA 12008 and also in the highly-shocked Chelyabinsk meteorite.The origin of the observed differences is discussed.A simple model combining the results of both our nanoindentation and HP-XRD measurements allows us to describe the contribution of macroscopic and chemical-bond related effects,both of which are necessary to reproduce the observed elastic modulus softening.Such joint analysis of the mechanical and elastic properties of meteorites and returned samples opens up a new avenue for characterizing these highly interesting materials.
文摘On June 3,Scopus,a database owned by Elsevier,released CiteScore 2024 metrics for academic journal evaluation.Both the Chinese and English editions of Petroleum Exploration and Development achieved record highs in the past year,ranking among the top in various categories.The CiteScore of the Chinese edition increased to 9.9 in 2024 from 8.4 in 2023,ranking 13th out of 330 journals in the Earth and Planetary Sciences:Geology category and 2lst out of 239 journals in the Earth and Planetary Sciences:Geotechnical Engineering and Engineering Geology category.
基金supported by the National Natural Science Foundation of China(Grant Nos.U244221042475072 and 42361144843).
文摘Using long-term Whole Atmosphere Community Climate Model version 5(WACCM5)simulations initialized with the climatology around the year 2000,we studied the anomalous distribution of planetary wave and gravity wave fluxes during distinct phases of the boreal stratospheric polar vortex(BSPV)and Quasi-Biennial Oscillation(QBO).The contributions of these two types of waves to Brewer-Dobson circulation(BDC)anomalies were further analyzed.The results revealed that under four distinct phases,the northern hemisphere BDC is primarily governed by planetary waves,whereas gravity waves counteract approximately half of the planetary wave influence on the BDC in the upper stratosphere.The QBO regulates the position of the anomaly center within the BDC’s descending branch in the northern hemisphere.In particular,during the westerly phase of the QBO(WQBO),the center of this anomalous descending branch is located in the upper stratosphere,whereas during the easterly phase of the QBO(EQBO),it is located in the lower stratosphere.Southern hemisphere BDC anomalies are regulated more by QBO activity:during the WQBO,it shows synchronous changes with the BDC anomaly in the northern hemisphere,whereas during the EQBO,it exhibits an antiphase relationship with the BDC anomaly in the northern hemisphere.Mesospheric circulation anomalies are predominantly driven by gravity wave activity.The circulation weakens during a weak BSPV and strengthens during a strong BSPV.Additionally,the descending branch anomaly of the northern hemisphere circulation is more pronounced during the WQBO,whereas the ascending branch anomaly of the southern hemisphere circulation is more significant during the EQBO.
基金the financial support of National Key Research and Development Program of China(No.2022YFF0801701)National Natural Science Foundation of China(Grants 42375070)。
文摘The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金the support from the National Natural Science Foundation of China (Grant No. 42175070)supported by the National Natural Science Foundation of China (Grant No. 42288101)supported by the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility” (Earth Lab)。
文摘By applying the convolution-based Hilbert transform in the zonal direction on six-hourly streamfunction fields at200 h Pa, we present the climatology and trends of the local wave period, and zonal and meridional phase speeds, of Rossby waves over the globe during the solstice seasons of 1979–2023. While partly similar to and inspired by Fragkoulidis and Wirth(2020), our method differs in its ability to cover both planetary-scale and synoptic-scale waves over not only the extratropics, but also the tropics and subtropics. Based on a physically reasonable global distribution of wave periods, our key new finding is a robust prolonging of wave periods over most regions of the tropics and subtropics during both solstice seasons of 1979–2023, except for the tropical Atlantic, which experiences a shortened wave period during June–July–August of 1979–2022. Both the prolonging and shortening of wave periods are mainly associated with the changes in planetary-scale waves. Regionally varying trends of the zonal phase speed(Cpx) of synoptic waves are consistent in sign with, but smaller in magnitude than, the trends of local zonal wind, confirming the conclusion of Wu and Lu(2023)on the opposite effects of zonal wind and the meridional gradient of potential vorticity on Cpx. Meanwhile, the Cpx trends of planetary-scale waves are relatively weak, and do not exhibit a robust relation with the trend of zonal wind. These new results are helpful toward better understanding the changes in atmospheric waves and extreme events under global warming.
文摘While China pioneers a revolutionary model of ecological civilization,some Western nations,faltering under fragmented policies and infrastructural inertia,should catch up,reconciling prosperity with planetary survival.
文摘In a Nature Physics report published in late September 2024[1],a team of scientists and engineers at Sandia National Laboratories(Albuquerque,NM,USA)described the results of a laboratory experiment showing that a nuclear blast could create a burst of X-rays powerful enough to change the path of a large asteroid that might one day be on a collision course with Earth.
文摘Sent out at 1:31am GMT+8 on May 29 by a Long March-3B carrier rocket from the Xichang Satellite Launch Center in Sichuan province,China,Tianwen-2,the second mission of China’s Planetary Exploration Program,correctly entered the transfer trajectory toward an asteroid named 2016HO3 after flying for 18 minutes.Its solar wings unfolded properly,signaling a successful start,and primed for the next stage of its mission.
基金Project(2024A1515240020)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.