Recrystallization behavior of a low carbon X70 pipeline steel was studied in the plane strain compression condition. It was found that the dynamic recovery but no dynamic recrystal- lization occurred in the current ex...Recrystallization behavior of a low carbon X70 pipeline steel was studied in the plane strain compression condition. It was found that the dynamic recovery but no dynamic recrystal- lization occurred in the current experimental condition. A method for examining the prior austenite grain boundary corrosion was supposed.展开更多
In order to investigate the deformation and failure of reinforced sand, and the reinforcing mechanism of flexible and rigid reinforcement, a set of plane strain compression tests of dense Toyoura reinforced sand with ...In order to investigate the deformation and failure of reinforced sand, and the reinforcing mechanism of flexible and rigid reinforcement, a set of plane strain compression tests of dense Toyoura reinforced sand with planar reinforcement of a wide range of stiffness were analysed by a nonlinear finite element method. The analysis was incorporated into an energy-based elasto-plastic constitutive model for sand to develop a stress path-independent work-hardening parameter based on the modified plastic strain energy concept. Numerical results indicate that the global stress-strain relations of sand specimens are reinforced by using relatively flexible and rigid reinforcement, and an unreinforced sand specimen can be reasonably simulated by the current finite element method. It is also found that the reinforcing mechanism and progressive failure with a development of shear bands in reinforced sand can be reasonably examined by the finite element method.展开更多
The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated s...The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.展开更多
Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology,widely applied in HSLA steel plate production.However,there are still certa...Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology,widely applied in HSLA steel plate production.However,there are still certain limitations,especially for thicker plate.The rolling schedule includes a long holding period (HP) after the roughing stage to allow the temperature to fall sufficiently for optimised TMCP during finishing.Intermediate Forced Cooling (IFC) applied during the HP can increase productivity by decreasing the required hold time,can restrict austenite grain growth,and can also improve the subsequent strain penetration in thick plate with further metallurgical benefits.Multi-pass plane strain compression (PSC) tests have been performed on the thermomechanical compression (TMC) machine at Sheffield University including different severities of IFC.Clearly it is impossible to simulate all aspects of the temperature and strain gradients present in thick plates in laboratory specimens,and most of the tests were conducted at temperatures and strains calculated by Finite Element modelling as relevant to specific positions through the plate thickness.However,some aspects of the gradients were addressed with tests using cold platens.The results have indeed shown that IFC can shorten the HP and reduce austenite grain growth and its variation across thick plate.展开更多
文摘Recrystallization behavior of a low carbon X70 pipeline steel was studied in the plane strain compression condition. It was found that the dynamic recovery but no dynamic recrystal- lization occurred in the current experimental condition. A method for examining the prior austenite grain boundary corrosion was supposed.
基金Project supported by the Association of International Education of Japan
文摘In order to investigate the deformation and failure of reinforced sand, and the reinforcing mechanism of flexible and rigid reinforcement, a set of plane strain compression tests of dense Toyoura reinforced sand with planar reinforcement of a wide range of stiffness were analysed by a nonlinear finite element method. The analysis was incorporated into an energy-based elasto-plastic constitutive model for sand to develop a stress path-independent work-hardening parameter based on the modified plastic strain energy concept. Numerical results indicate that the global stress-strain relations of sand specimens are reinforced by using relatively flexible and rigid reinforcement, and an unreinforced sand specimen can be reasonably simulated by the current finite element method. It is also found that the reinforcing mechanism and progressive failure with a development of shear bands in reinforced sand can be reasonably examined by the finite element method.
文摘The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.
基金Tata Steel Europe Research Development & Technology for their financial and technical support
文摘Thermomechanical Controlled Processing (TMCP) including accelerated cooling after the final hot rolling pass is a well-established technology,widely applied in HSLA steel plate production.However,there are still certain limitations,especially for thicker plate.The rolling schedule includes a long holding period (HP) after the roughing stage to allow the temperature to fall sufficiently for optimised TMCP during finishing.Intermediate Forced Cooling (IFC) applied during the HP can increase productivity by decreasing the required hold time,can restrict austenite grain growth,and can also improve the subsequent strain penetration in thick plate with further metallurgical benefits.Multi-pass plane strain compression (PSC) tests have been performed on the thermomechanical compression (TMC) machine at Sheffield University including different severities of IFC.Clearly it is impossible to simulate all aspects of the temperature and strain gradients present in thick plates in laboratory specimens,and most of the tests were conducted at temperatures and strains calculated by Finite Element modelling as relevant to specific positions through the plate thickness.However,some aspects of the gradients were addressed with tests using cold platens.The results have indeed shown that IFC can shorten the HP and reduce austenite grain growth and its variation across thick plate.