期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses 被引量:4
1
作者 Bing-bing Guo Xiao-lin Zheng +4 位作者 Zhen-gang Lu Xing Wang Zheng-qin Yin Wen-sheng Hou Ming Meng 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1622-1627,共6页
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized... Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. 展开更多
关键词 nerve regeneration primary visual cortex electrical stimulation visual cortical prosthesis low resolution vision pixelized image functional magnetic resonance imaging voxel size neural regeneration brain activation pattern
暂未订购
Study of silicon pixel sensor for synchrotron radiation detection 被引量:1
2
作者 李贞杰 贾云丛 +2 位作者 胡凌飞 刘鹏 殷华湘 《Chinese Physics C》 SCIE CAS CSCD 2016年第3期90-98,共9页
The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterizat... The silicon pixel sensor(SPS) is one of the key components of hybrid pixel single-photon-counting detectors for synchrotron radiation X-ray detection(SRD). In this paper, the design, fabrication, and characterization of SPSs for single beam X-ray photon detection is reported. The designed pixel sensor is a p+-in-n structure with guard-ring structures operated in full-depletion mode and is fabricated on 4-inch, N type, 320 μm thick, high-resistivity silicon wafers by a general Si planar process. To achieve high energy resolution of X-rays and obtain low dark current and high breakdown voltage as well as appropriate depletion voltage of the SPS, a series of technical optimizations of device structure and fabrication process are explored. With optimized device structure and fabrication process,excellent SPS characteristics with dark current of 2 n A/cm^2, full depletion voltage 〈 50 V and breakdown voltage〉 150 V are achieved. The fabricated SPSs are wire bonded to ASIC circuits and tested for the performance of X-ray response to the 1W2 B synchrotron beam line of the Beijing Synchrotron Radiation Facility. The measured S-curves for SRD demonstrate a high discrimination for different energy X-rays. The extracted energy resolution is high(〈 20% for X-ray photon energy 〉 10 keV) and the linear properties between input photo energy and the equivalent generator amplitude are well established. It confirmed that the fabricated SPSs have a good energy linearity and high count rate with the optimized technologies. The technology is expected to have a promising application in the development of a large scale SRD system for the Beijing Advanced Photon Source. 展开更多
关键词 synchrotron X-ray silicon pixel sensor dark current energy resolution count rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部